首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   1篇
安全科学   1篇
废物处理   2篇
环保管理   11篇
综合类   10篇
基础理论   4篇
污染及防治   19篇
评价与监测   2篇
社会与环境   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   8篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1967年   1篇
  1966年   2篇
  1959年   1篇
  1953年   1篇
排序方式: 共有50条查询结果,搜索用时 978 毫秒
1.
2.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   
3.
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), 1H and 13C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, 13C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.  相似文献   
4.
ABSTRACT

Simultaneous removal of H2S and CS2 was studied with a peat biofilter inoculated with a Thiobacillus strain that oxidizes both compounds in an acidic environment. Both sulfurous gases at concentrations below 600 mg S/m3 were efficiently removed, and the removal efficiencies were similar, 99%, with an empty bed retention time (EBRT) of more than 60 sec. Concentrations greater than 1300-5000 mg S/m3 caused overloading of the filter material, resulting in high H2SO4 production, accumulation of elemental sulfur, and reduced removal efficiency. The highest sulfur removal rate achieved was 4500 g-S/day/m3 filter material. These results indicate that peat is suitable as a biofilter material for the removal of a mixture of H2S and CS2 when concentrations of gases to be purified are low (less than 600 mg/m3), but it is still odorous and toxic to the environment and humans.  相似文献   
5.
Eutrophication of surface waters can be accelerated by agricultural inputs of phosphorus (P), provided that P is in a form that can be utilized by aquatic algae. We studied anion exchange resin (AER) extraction and a dual culture algal assay (DCAA) for the determination of potentially algal-available P in water samples without sediment preconcentration. Our material consisted of agricultural and forest runoff and wastewaters. The results obtained by the two methods were essentially equal when the samples contained only small amounts of particulate phosphorus (PP) in relation to dissolved molybdate-reactive phosphorus (DRP). However, in turbid agricultural runoff, P extracted with AER averaged 72% (n = 17) of the P yield of the 3-wk DCAA (R2 = 0.94). When the runoff samples were diluted for the AER extraction in the same manner as for the DCAA, the AER-P yield increased to 85% (n = 5) of DCAA-P. The minimum detectable value was greater for the AER test (41 microg L(-1) AER-extractable P) than for the DCAA (7 microg L(-1) DCAA-P). At concentrations greater than about 50 microg L(-1) AER-P or DCAA-P, the accuracy of the methods was satisfactory, with the coefficient of variation in replicated analyses being less than 10% for the AER test and less than 20% for the DCAA. Other anions competing for the exchange sites of the AER decreased P recovery by 15 to 20% when their equivalent concentration exceeded about 4 mmol, L(-1), and this effect was relatively constant over a large concentration range. We consider that AER extraction is a suitable low-cost method to estimate the algal availability of P in runoff samples.  相似文献   
6.
Much of the phosphorus (P) from erosive soils is transported to water bodies together with eroded soil. Studies clarifying the impact of soil erosion on eutrophication have sought largely to quantify the reserves of P in soil particles that can be desorbed in different types of receiving waters. Aquatic microbiology has revealed that the cycling of P is coupled to the availability of common electron acceptors, Fe oxides and SO?, through anaerobic mineralization in sediments. Eroded soil is also rich in Fe oxides, and their effect on the coupled cycling of C, Fe, S, and P has been neglected in eutrophication research. Soil erosion, and its control, should therefore be studied by considering not only the processes occurring in the water phase but also those taking place after the soil particles have settled to the bottom. We propose that in SO?-rich systems, Fe oxides transported by eroded soil may promote Fe cycling, inhibit microbial SO? reduction and maintain the ability of sediment to retain P. We discuss the mechanisms through which eroded soil may affect benthic mineralization processes and the manner in which soil erosion may contribute to or counteract eutrophication.  相似文献   
7.
8.
Simultaneous removal of H2S and CS2 was studied with a peat biofilter inoculated with a Thiobacillus strain that oxidizes both compounds in an acidic environment. Both sulfurous gases at concentrations below 600 mg S/m3 were efficiently removed, and the removal efficiencies were similar, 99%, with an empty bed retention time (EBRT) of more than 60 sec. Concentrations greater than 1300-5000 mg S/m3 caused overloading of the filter material, resulting in high H2SO4 production, accumulation of elemental sulfur, and reduced removal efficiency. The highest sulfur removal rate achieved was 4500 g-S/day/m3 filter material. These results indicate that peat is suitable as a biofilter material for the removal of a mixture of H2S and CS2 when concentrations of gases to be purified are low (less than 600 mg/m3), but it is still odorous and toxic to the environment and humans.  相似文献   
9.
Disinfection by-products in Finnish drinking waters   总被引:11,自引:0,他引:11  
Disinfection by-products (DBPs) were measured in plant effluents of 35 Finnish waterworks, which utilized different treatment processes and raw water sources. DBPs were measured also from the distribution systems of three waterworks. Di- and trichloroacetic acids, and chloroform were the major DBPs found in treated water samples. The concentration of six haloacetic acids (HAA6) exceeded the concentrations of trihalomethanes (THMs). Chlorinated drinking waters (DWs) originating from surface waters contained the highest concentration of HAA6 and THMs: 108 and 26 microg/l, respectively. The lowest concentrations of DBPs were measured from ozonated and/or activated carbon filtrated and chloraminated DWs. Higher concentrations of HAA6, THMs, and adsorbable organic halogens were measured in summer compared to winter. The levels of chlorinated acetic acids, chloroform, and bromodichloromethane correlated positively with mutagenicity. Past mutagenicity levels of DWs were examined. A major reduction in the use of prechlorination, increased use of chloramine disinfection, and better removal of organic carbon were the most important reasons for the 69% decrease in mutagenicity from 1985 to 1994.  相似文献   
10.
用低压紫外线照射具有相同颗粒物粒径分布的一系列水样,把实验结果带入二重动力学模型进行计算,评价自然状态下颗粒物对粪大肠菌的保护作用. 结果表明,二级出水中的大部分粪大肠菌都与颗粒物交连在一起;在颗粒物<105 C·mL-1时,颗粒物的增加会明显降低紫外线对二级出水中粪大肠菌的灭活率,但当颗粒物>105 C·mL-1时,这种影响不明显.从二重动力学模型的计算结果来看,对于不同颗粒物浓度的水样,难灭活的微生物所占的比重很小且比较稳定,大多数与颗粒物结合的粪大肠菌都较易被紫外线灭活.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号