首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2023年   1篇
  2022年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Environmental Chemistry Letters - The rising energy conflicts and environmental pollution are calling for the rapid development of advanced techniques such as photoelectrocatalysis to...  相似文献   
2.

Environmental and energy crises are a major threat to the sustainable growth of the human society, calling for greener technologies such as photocatalysis. Photocatalysis is a solar-driven approach that converts photon energy into chemical energy, yet the conversion efficacy of classical photocatalysis is usually restricted and controlled by the charge carrier’s separation and migration. Enhanced conversion requires suppressed recombination rate and superior redox abilities. From this aspect, the manipulation of heterojunction allows to overcome the drawback of classical photocatalysis. The cascade mechanism follows a dual direct charge migration route, resulting in enhanced redox abilities and efficient mineralization of pollutants. Here, we review photocatalytic material aspects in improving redox ability by cascade charge transfer. We describe the mechanisms and applications of three cascade systems: two type-II cascade systems, mediator-based cascade systems, and dual direct Z-scheme. We highlight the superiority of the direct dual cascade route with a prolonged lifetime of carriers, higher quantum yield, and enhanced redox abilities. Applications to carbon dioxide reduction, hydrogen production by water splitting and pollutant degradation are discussed.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号