首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
基础理论   10篇
评价与监测   3篇
灾害及防治   1篇
  2017年   1篇
  2016年   1篇
  2012年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  1996年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有14条查询结果,搜索用时 234 毫秒
1.
Patchy distributions: Optimising sample size   总被引:1,自引:0,他引:1  
A method for estimating sample size which does not require an a priori definition of desired precision, or the assumption that the population is normally distributed with constant variance, has recently been proposed. This paper discusses this method and presents five modifications which make the method easier to use and reduce the probability of estimating a larger sample size than is actually required. The method is extended and used to estimate the mean abundance of patchily distributed benthic organisms. The technique can be used to guide the design of any environmental sampling programme, be it physical, chemical or biological, where comparisons between times and/or locations are required. Trade-offs between numbers of replicates and numbers of levels/sites are discussed.  相似文献   
2.
Norkko A  Hewitt JE  Thrush SE  Funnell GA 《Ecology》2006,87(1):226-234
Facilitation by habitat modifiers is common in ecological communities, but the potential for temporal and spatial variations in environmental conditions to modify the outcome of these interactions and influence the strength of feedbacks is poorly understood. Suspension-feeding bivalves are important habitat modifiers that can facilitate surrounding communities by providing refuge from predation and changing boundary flows and through the production of organically enriched biodeposits. However, numerous studies have highlighted the problem of finding generalizable patterns. We tested the strength and generality of the relationship between the large suspension-feeding bivalve Atrina zelandica and surrounding macrofauna and hypothesized that facilitation by Atrina is conditional and modulated by site-specific suspended sediment concentration (SSC), which influences the quantity and quality of biodeposit production. We found temporally consistent patterns of higher rates of biodeposition and increased abundance and species richness in close proximity to Atrina under low SSC conditions. Facilitation strength decreased with increasing SSC, suggesting that the facilitation effect of Atrina is reduced and reversed along this environmental stress gradient.  相似文献   
3.
Coco G  Thrush SF  Green MO  Hewitt JE 《Ecology》2006,87(11):2862-2870
We explore the role of biophysical feedbacks occurring at the patch scale (spatial scale of tens of meters) that influence bivalve physiological condition and affect patch stability by developing a numerical model for the pinnid bivalve, Atrina zelandica, in cohesive sediments. Simulated feedbacks involve bivalve density, flow conditions (assumed to be primarily influenced by local water depth and peak current speed), suspended sediment concentration (evaluated through a balance between background concentration, deposition, and erosion), and changes in the physiology of Atrina derived from empirical study. The model demonstrates that high bivalve density can lead to skimming flow and to a concomitant decrease in resuspension that will affect suspended sediment concentration over the patch directly feeding back on bivalve physiology. Consequently, for a given flow and background suspended sediment load, the stability of a patch directly depends on the size and density of bivalves in the patch. Although under a range of conditions patch stability is ensured independently of bivalve density, simulations clearly indicate that sudden changes in bivalve density or suspended sediment concentration can substantially affect patch structure and lead to different stable states. The model highlights the role of interactions between organisms, flow, and broader scale environmental conditions in providing a mechanistic explanation for the patchy occurrence of benthic suspension feeders.  相似文献   
4.
The tellinid bivalveMacomona liliana (Iredale) occurs at relatively low densities on a sandbank (Te Tau bank) in Manukau Harbour, New Zealand. Te Tau bank is dominated by polychaetes, including the tube-building spionidBoccardia syrtis (Rainer). JuvenileM. liliana are known to disperse as post-settlement juveniles by byssus-drifting. Laboratory experiments were conducted to assess whether the low abundance ofM. liliana on Te Tau bank was due to the presence ofB. syrtis, or to some reaction to the sediment itself. In particular, we, examined how juvenileM. liliana survived after exposure to Te Tau bank sediments with and without the spionid tube-mat for 1 mo in still-water conditions, and how they responded when given a choice of different sediment/tube-mat treatments in moving water. JuvenileM. liliana did not appear to have a strong aversion to settling and burrowing in sediments from Te Tau bank. Sediments without the tube-mat did not adversely affect the survivorship of the bivalves, but survival was significantly lower amongst theB. syrtis tube-mat. In the presence of a current, the juvenile bivalves settled in Te Tau bank sediments without a tube-mat, but avoided settling amongst liveB. syrtis. An artificial tube-mat enhanced settlement. Avoidance of liveB. syrtis appears to be an avoidance of the worms themselves rather than a response to the physical presence of their tubes.  相似文献   
5.
Predicting the dynamics of ecosystems requires an understanding of how trophic interactions respond to environmental change. In Antarctic marine ecosystems, food web dynamics are inextricably linked to sea ice conditions that affect the nature and magnitude of primary food sources available to higher trophic levels. Recent attention on the changing sea ice conditions in polar seas highlights the need to better understand how marine food webs respond to changes in such broad-scale environmental drivers. This study investigated the importance of sea ice and advected primary food sources to the structure of benthic food webs in coastal Antarctica. We compared the isotopic composition of several seafloor taxa (including primary producers and invertebrates with a variety of feeding modes) that are widely distributed in the Antarctic. We assessed shifts in the trophic role of numerically dominant benthic omnivores at five coastal Ross Sea locations. These locations vary in primary productivity and food availability, due to their different levels of sea ice cover, and proximity to polynyas and advected primary production. The delta15N signatures and isotope mixing model results for the bivalves Laternula elliptica and Adamussium colbecki and the urchin Sterechinus neumeyeri indicate a shift from consumption of a higher proportion of detritus at locations with more permanent sea ice in the south to more freshly produced algal material associated with proximity to ice-free water in the north and east. The detrital pathways utilized by many benthic species may act to dampen the impacts of large seasonal fluctuations in the availability of primary production. The limiting relationship between sea ice distribution and in situ primary productivity emphasizes the role of connectivity and spatial subsidies of organic matter in fueling the food web. Our results begin to provide a basis for predicting how benthic ecosystems will respond to changes in sea ice persistence and extent along environmental gradients in the high Antarctic.  相似文献   
6.
Following the severe flood events of 1998 and 2000, the United Kingdom's Environment Agency prioritised the need to increase public flood risk awareness. Drawing on data collected during research undertaken for the Environment Agency, this paper contributes to understanding of one aspect of flood awareness: people's recognition that their property is in an area that is potentially at risk of flooding. Quantitative analyses indicate that class is the most influential factor in predicting flood risk awareness, followed by flood experience and length of time in residence. There are also significant area differences. Our qualitative work explores how those defined as 'at risk' account for their lack of awareness or concern about their risk status. We conclude that the problem is often not simply a lack of awareness, but rather, assessments of local risk based on experience that underestimate the impact of rare or extreme events. We underline the importance of engaging with local perspectives on risk and making local people part of 'awareness-raising' processes.  相似文献   
7.
Effective environmental management requires documentation of ecosystem status and changes to that status. Without long-term data, short-term natural variability can mask chronic and/or cumulative impacts, often until critical levels are reached. However, a trade-off generally occurs between sampling in space and time. This study analyses a spatially and temporally nested long-term (12 years) monitoring programme conducted on benthic macrofauna in a large harbour. Sampling was carried out at six sites for 5.5 years, after which only two sites were sampled for the next 5 years. After this period, all six sites were sampled for another 2 years. While ecology is frequently thought of being highly variable, this design was able to detect trends, and cycles, in abundance, with only around 10% of species at each site exhibiting unpredictable temporal variability. Sites exhibiting similar trends in the abundance of a species over the 12.5-year period were generally spatially contiguous, and the spatial scale of change could be assessed. Continuous sampling at two sites identified whether changes in unsampled sites were related to long-term cycles. Moreover, this sampling provided a long-term background of temporal fluctuations against which to assess the ecological significance of observed changes.  相似文献   
8.
The importance of long-term environmental monitoring and research for detecting and understanding changes in ecosystems and human impacts on natural systems is widely acknowledged. Over the last decades, a number of critical components for successful long-term monitoring have been identified. One basic component is quality assurance/quality control protocols to ensure consistency and comparability of data. In Norway, the authorities require environmental monitoring of the impacts of the offshore petroleum industry on the Norwegian continental shelf, and in 1996, a large-scale regional environmental monitoring program was established. As a case study, we used a sub-set of data from this monitoring to explore concepts regarding best practices for long-term environmental monitoring. Specifically, we examined data from physical and chemical sediment samples and benthic macroinvertebrate assemblages from 11 stations from six sampling occasions during the period 1996–2011. Despite the established quality assessment and quality control protocols for this monitoring program, we identified several data challenges, such as missing values and outliers, discrepancies in variable and station names, changes in procedures without calibration, and different taxonomic resolution. Furthermore, we show that the use of different laboratories over time makes it difficult to draw conclusions with regard to some of the observed changes. We offer recommendations to facilitate comparison of data over time. We also present a new procedure to handle different taxonomic resolution, so valuable historical data is not discarded. These topics have a broader relevance and application than for our case study.  相似文献   
9.
Many conservation actions are justified on the basis of managing biodiversity. Biodiversity, in terms of species richness, is largely the product of rare species. This is problematic because the intensity of sampling needed to characterize communities and patterns of rarity or to justify the use of surrogates has biased sampling in favor of space over time. However, environmental fluctuations interacting with community dynamics lead to temporal variations in where and when species occur, potentially affecting conservation planning by generating uncertainty about results of species distribution modeling (including range determinations), selection of surrogates for biodiversity, and the proportion of biodiversity composed of rare species. To have confidence in the evidence base for conservation actions, one must consider whether temporal replication is necessary to produce broad inferences. Using approximately 20 years of macrofaunal data from tidal flats in 2 harbors, we explored variation in the identity of rare, common, restricted range, and widespread species over time and space. Over time, rare taxa were more likely to increase in abundance or occurrence than to remain rare or disappear and to exhibit temporal patterns in their occurrence. Space–time congruency in ranges (i.e., spatially widespread taxa were also temporally widespread) was observed only where samples were collected across an environmental gradient. Fifteen percent of the taxa in both harbors changed over time from having spatially restricted ranges to having widespread ranges. Our findings suggest that rare species can provide stability against environmental change, because the majority of species were not random transients, but that selection of biodiversity surrogates requires temporal validation. Rarity needs to be considered both spatially and temporally, as species that occur randomly over time are likely to play a different role in ecosystem functioning than those exhibiting temporal structure (e.g., seasonality). Moreover, temporal structure offers the opportunity to place management and conservation activities within windows of maximum opportunity.  相似文献   
10.
Recent studies emphasize the role of indirect relationships and feedback loops in maintaining ecosystem resilience. Environmental changes that impact on the organisms involved in these processes have the potential to initiate threshold responses and fundamentally shift the interactions within an ecosystem. However, empirical studies are hindered by the difficulty of designing appropriate manipulative experiments to capture this complexity. Here we employ structural equation modeling to define and test the architecture of ecosystem interaction networks. Using survey data from 19 estuaries we investigate the interactions between biological (abundance of large bioturbating macrofauna, microphytobenthos, and detrital matter) and physical (sediment grain size) processes. We assess the potential for abrupt changes in the architecture of the network and the strength of interactions to occur across environmental gradients. Our analysis identified a potential threshold in the relationship between sediment mud content and benthic chlorophyll a, at -12 microg/g, using quantile regression. Below this threshold, the interaction network involved different variables and fewer feedbacks than above. This approach has potential to improve our empirical understanding of thresholds in ecological systems and our ability to design manipulative experiments that test how and when a threshold will be passed. It can also be used to indicate to resource managers that a particular system has the potential to exhibit threshold responses to environmental change, emphasizing precautionary management and facilitating a better understanding of how persistent multiple stressors threaten the resilience and long-term use of natural ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号