首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
安全科学   1篇
基础理论   1篇
污染及防治   5篇
社会与环境   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1989年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We present climate change projections and apply indices of weather extremes for the Mediterranean island Cyprus using data from regional climate model (RCM) simulations driven by the IPCC A1B scenario within the ENSEMBLES project. Daily time-series of temperature and precipitation were used from six RCMs for a reference period 1976–2000 and for 2026–2050 (‘future‘) for representative locations, applying a performance selection among neighboring model grid-boxes. The annual average temperatures of the model ensemble have a ±1.5°C bias from the observations (negative for maximum and positive for minimum temperature), and the models underestimate annual precipitation totals by 4–17%. The climatological annual cycles for the observations fall within the 1σ range of the 6-model average, highlighting the strength of using multi-model output. We obtain reasonable agreement between models and observations for the temperature-related indices of extremes for the recent past, while the comparison is less good for the precipitation-related extremes. For the future, the RCM ensemble shows significant warming of 1°C in winter to 2°C in the summer for both maximum and minimum temperatures. Rainfall is projected to decrease by 2–8%, although this is not statistically significant. Our results indicate the shift of the mean climate to a warmer state, with a relatively strong increase in the warm extremes. The precipitation frequency is projected to decrease at the inland Nicosia and at the coastal Limassol, while the mountainous Saittas could experience more frequent 5–15 mm/day rainfall. In future, very hot days are expected to increase by more than 2 weeks/year and tropical nights by 1 month/year. The annual number of consecutive dry days shows a statistically significant increase (of 9 days) in Limassol. These projected changes of the Cyprus climate may adversely affect ecosystems and the economy of the island and emphasize the need for adaptation strategies.  相似文献   
2.
We present characteristics of the sulfur dioxide (SO2) loading over Thessaloniki, Greece, and seven other selected sites around the world using SO2 total column measurements from Brewer spectrophotometers together with satellite estimates of the Version 8 TOMS Sulfur Dioxide Index (SOI) over the same locations, retrieved from Nimbus 7 TOMS (1979–1993), Earth Probe TOMS (1996–2003) and OMI/Aura (2004–2006). Traditionally, the SOI has been used to quantify the SO2 quantities emitted during great volcanic eruptions. Here, we investigate whether the SOI can give an indication of the total SO2 load for areas and periods away from eruptive volcanic activity by studying its relative changes as a correlative measure to the SO2 total column. We examined time series from Thessaloniki and another seven urban and non-urban stations, five in the European Union (Arosa, De Bilt, Hohenpeissenberg, Madrid, Rome) and two in India (Kodaikanal, New Delhi). Based on the Brewer data, Thessaloniki shows high SO2 total columns for a European Union city but values are still low if compared to highly affected regions like those in India. For the time period 1983–2006 the SO2 levels above Thessaloniki have generally decreased with a rate of 0.028 Dobson Units (DU) per annum, presumably due to the European Union's strict sulfur control policies. The seasonal variability of the SO2 total column exhibits a double peak structure with two maxima, one during winter and the second during summer. The winter peak can be attributed to central heating while the summer peak is due to synoptic transport from sources west of the city and sources in the north of Greece. A moderate correlation was found between the seasonal levels of Brewer total SO2 and SOI for Thessaloniki, Greece (R = 0.710–0.763) and Madrid, Spain (R = 0.691) which shows that under specific conditions the SOI might act as an indicator of the SO2 total load.  相似文献   
3.
The objective of the present work is to demonstrate the influence of the meso-scale dynamic phenomena on the larger scale air pollution characteristics. A limited set of episodes with very large sulphur pollution in Bulgaria or Northern Greece is chosen for the study. A 3D quasi-hydrostatic model of the meso-scale dynamics, based on the Businesque approximation (the formulation of Guthman) is used for the purpose. Some numerical experiments for the Balkan Peninsula are carried out under different background (synoptic) conditions. The simulated flow systems outline the main topography effects, typical for the region, such as slope winds, channelling of the air flows or blocking effects. Numerical simulations of the air pollution transport are also carried out, with and without accounting for the meso-scale deformations of the wind field. The comparison of the air pollution characteristics, obtained in both the cases demonstrates that the underlying surface heterogeneity in some of the synoptic situations may have influence not only on the detailed air pollution field in the region, but also on some larger scale pollution characteristics – the total pollution quantity in the air above the countries, the mean surface concentration, the pollution fluxes trough the country boundaries, dry and wet deposition.  相似文献   
4.
The EMAP model (Eulerian Model for Air Pollution) is applied for calculating the sulfur concentration and deposition fields for 1995 as based upon Bulgarian and Greek sources. The country-to-country budgets show that about 4% of the sulfur oxides emitted by Bulgaria are deposited over Greek territory, estimated at 28 kt S. Only 2% of sulfur compounds emitted by Greece are deposited over Bulgaria, estimated at 6.2 kt S for 1995. This data is in agreement with EMEP/MSC-W estimates and provides more details concerning time and space. The results can be used in decision-making, negotiating and the development of contamination strategies.  相似文献   
5.
During the operation “Allied Force” in the spring of 1999, the burning or damaging of industrial and military targets in the Former Republic of Yugoslavia resulted in the release of a large number of chemicals into the atmosphere. The releases contained not only conventional air pollutants, but also Semi-Volatile Organic compounds (SVOs) which are known to be hazardous to health. Under suitable meteorological conditions, these chemicals can be transported across borders over large distances. In this paper, an analysis of measurements and dispersion calculations is presented which provides evidence of pollutant transport from the conflict area to Greece. The measuring program was carried out in Xanthi, Greece and included aerosol sampling and subsequent analysis for the determination of the concentration of SVOs including dioxins, furans, PCBs (PolyChlorinated Biphenyls), PAHs (Polycyclic Aromatic Hydrocarbons) and organic phthalates. This paper focuses on two episodes of organic phthalates that were observed during the conflict period. Pollution measurements are interpreted by means of air trajectories and dispersion calculations. For this purpose, the HYSPLIT_4 (HYbrid Single-Particle Langrangian Integrated Trajectory) modeling system is used to calculate the dispersion of toxic substances.  相似文献   
6.
The 7Be activity concentrations measured from 1996 to 1998 at four high-altitude stations, Jungfraujoch—Switzerland, Zugspitze—Germany, Sonnblick—Austria and Mt. Cimone—Italy, were analyzed in combination with a set of, meteorological and atmospheric parameters such as the tropopause height, relative and specific humidity and also in conjunction with 3D back-trajectories in order to investigate the climatological features of 7Be. A frequency distribution analysis on 7Be activity concentrations revealed the existence of two concentration classes around 1.5 and 6 mBq m−3 and a transition class between the two modes of the distribution at 3–4 mBq m−3. Cross-correlation analysis performed between 7Be and a number of meteorological and atmospheric parameters at the first three stations showed a strong negative correlation with relative humidity (−0.56, −0.51, −0.41) indicating the importance of wet scavenging as a controlling mechanism. Also, the positive correlation with the height of 3-days back-trajectories and tropopause height (+0.49/+0.43, +0.59/+0.36, +0.44/+0.38) shows that downward transport from the upper or middle to lower troposphere within anticyclonic conditions plays also an important role. Trajectory statistics showed that low 7Be concentrations typically originate from lower-altitude subtropical ocean areas, while high concentrations arrive from the north and high altitudes, as is characteristic for stratospheric intrusions. Although the 7Be activity concentrations are highly episodic, the monthly means indicate an annual cycle with a late-summer maximum at all stations. The correlation coefficients calculated for monthly means of the 7Be and atmospheric data suggest that the main predictor controlling the seasonality of the 7Be concentrations is tropopause height (+0.76, +0.56, +0.60), reflecting more vertical transport from upper tropospheric levels into the lower troposphere during the warm season than during the cold season.  相似文献   
7.
Global cement production has increased twofold during the last decade. This increase has been accompanied by the installation of many new plants, especially in Southeast Asia. Although various aspects of pollution related to cement production have been reported, the impact of primary material deposition practices on ambient air quality has not yet been studied. In this study, we show that deposition practices can have a very serious impact on levels of ambient aerosols, far larger than other cement production-related impacts. Analyses of ambient particulates sampled near a cement plant show 1.3–30.4 mg/m3 total suspended particulates in the air and concentrations of particles with a diameter of 10 μm or less at 0.04–3 mg/m3. These concentrations are very high and seriously exceed air quality standards. We unequivocally attribute these levels to outdoor deposition of cement primary materials, especially clinker, using scanning electron microscopy/energy-dispersive X-ray spectroscopy. We also used satellite-derived aerosol optical depth maps over the area of study to estimate the extent of the spatial impact. The satellite data indicate a 33 % decrease in aerosol optical depth during a 10-year period, possibly due to changing primary material deposition practices. Although the in situ sampling was performed in one location, primary materials used in cement production are common in all parts of the world and have not changed significantly over the last decades. Hence, the results reported here demonstrate the dominant impact of deposition practices on aerosol levels near cement plants.  相似文献   
8.
This paper is the second part of a research programme concerning the modelling capabilities of accidental releases of heavier-than-air toxic gases. The existing theory, which includes the strength of the source and the subsequent development of the released cloud under representative environmental conditions, is described. Comparison of the ZZB-2 system predictions with field data from the Desert Tortoise and Lyme Bay V, ammonia and chlorine releases, shows excellent agreement at distances between ≈ 200 m and a few kilometres from the source. The correlation between observed and predicted cloud concentrations, was in all cases significant at a confidence level better than 95%.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号