首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   4篇
基础理论   1篇
污染及防治   2篇
评价与监测   1篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2017年   3篇
  2012年   1篇
  2009年   1篇
排序方式: 共有8条查询结果,搜索用时 218 毫秒
1
1.
The porous composites of clay and fly ash have the potential to be used in many fields, such as catalyst support and gas adsorbents. In this study, various ratios of fly ash (1–2) with different percentage of suspension (50–70 wt%) were applied to produce porous clay-fly ash composites via polymeric replica technique. Fabrication process starts by mixing clay and fly ash in distilled water to form slurry. The process is followed by fully immersing polymer sponge in slurry. The excess slurry is then removed through squeezing. Finally, the sponge coated with slurry is sintered at 500 and 1250 °C for 1 h. It is found that the compressive strength of porous composites improves significantly (0.178–1.28 MPa) when the amount of clay-fly ash suspension mixture (50–70 wt%) increases. The compressive strength of porous composites is mainly attributed to the mullite, quartz and amorphous phase formations. These results are supported by X-ray diffraction analysis. On the other hand, increase in the amount of suspension reduces the apparent density (from 2.44 to 2.32 g/cm3) and porosity (from 97 to 85 %). The reduction in apparent density is believed to be caused by the presence of high fly ash content in porous composites. The melted fly ash cenospheres have closed the internal pores and increased density of samples. Higher suspension level not only reduces porosity, but also increases close pores of the porous composites. The results are justified through the observation from the structures of porous clay-fly ash composites.  相似文献   
2.
The present study is focused on clarifying the influence of waste gypsum (WG) in replacing natural gypsum (NG) in the production of ordinary Portland cement (OPC). WG taken from slip casting moulds in a ceramic factory was formed from the hydration of plaster of paris. Clinker and 3–5 wt% of WG was ground in a laboratory ball mill to produce cement waste gypsum (CMWG). The same procedure was repeated with NG to substitute WG to prepare cement natural gypsum (CMNG). The properties of NG and WG were investigated via X-ray Diffraction (XRD), X-ray fluorescence (XRF) and differential scanning calorimetry (DSC)/thermogravimetric (TG) to evaluate the properties of CMNG and CMWG. The mechanical properties of cement were tested in terms of setting time, flexural and compressive strength. The XRD result of NG revealed the presence of dihydrate while WG contained dihydrate and hemihydrate. The content of dihydrate and hemihydrates were obtained via DSC/TG, and the results showed that WG and NG contained 12.45% and 1.61% of hemihydrate, respectively. Furthermore, CMWG was found to set faster than CMNG, an average of 15.29% and 13.67% faster for the initial and final setting times, respectively. This was due to the presence of hemihydrate in WG. However, the values obtained for flexural and compressive strength were relatively the same for CMNG and CMWG. Therefore, this result provides evidence that WG can be used as an alternative material to NG in the production of OPC.  相似文献   
3.
Increased energy consumption due to industrial growth has increased the levels of carbon dioxide (CO2) emission being released into the atmosphere. CO2 emission is a type of greenhouse gas which is a major cause of global warming. Since the issue of CO2 emissions has drawn much attention in recent years, the development of CO2 capture technology has become a necessity. Although CO2 adsorbents are still at the early development stage, it has been suggested that CO2 adsorbents are the most effective technology in controlling CO2 emissions. Solid adsorbents have great potential as an alternative method to conventional adsorbents in adsorbing CO2. In this paper, low cost adsorbents including activated carbon, zeolites, mesoporous silica and clays are discussed in terms of adsorbent preparation methods and CO2 adsorption capacity. The low cost adsorbents are mainly derived from waste materials such as fly ash, steel slag, red mud, bagasses wastes and wood wastes. Besides that, natural resources such as clays have also been applied as low cost CO2 adsorbents. Surface modifications have also been applied to the low cost adsorbents, including metal ion exchange and amine impregnation to enhance CO2 adsorption capacity. In the last section, the current status of CO2 adsorbents is summarized and future trends are discussed briefly to predict the potential materials which can be applied as CO2 adsorbents.  相似文献   
4.
This review focuses the behaviour of arsenic in plant?Csoil and plant?Cwater systems, arsenic?Cplant cell interactions, phytoremediation, and biosorption. Arsenate and arsenite uptake by plants varies in different environment conditions. An eco-friendly and low-cost method for arsenic removal from soil?Cwater system is phytoremediation, in which living plants are used to remove arsenic from the environment or to render it less toxic. Several factors such as soil redox conditions, arsenic speciation in soils, and the presence of phosphates play a major role. Translocation factor is the important feature for categorising plants for their remediation ability. Phytoremediation techniques often do not take into account the biosorption processes of living plants and plant litter. In biosorption techniques, contaminants can be removed by a biological substrate, as a sorbent, bacteria, fungi, algae, or vascular plants surfaces based on passive binding of arsenic or other contaminants on cell wall surfaces containing special active functional groups. Evaluation of the current literature suggests that understanding molecular level processes, and kinetic aspects in phytoremediation using advanced analytical techniques are essential for designing phytoremediation technologies with improved, predictable remedial success. Hence, more efforts are needed on addressing the molecular level behaviour of arsenic in plants, kinetics of uptake, and transfer of arsenic in plants with flowing waters, remobilisation through decay, possible methylation, and volatilisation.  相似文献   
5.
Journal of Material Cycles and Waste Management - This study focuses on the potential usage of sago pith waste ash (SPWA) obtained from sago pith waste (SPW) calcined from 500 to...  相似文献   
6.
The presence of high levels of arsenic (As) in rice fields has negative effects on the health of those consuming rice as their subsistence food. This study determined the variation in total As concentration in local aromatic rice (LAR) (kalijira) and two high-yielding varieties (HYVs) (BRRI dhan 32 and BRRI dhan 28) grown in paddy fields in Matlab, Bangladesh, an As hotspot with elevated As levels in groundwater. Mature rice grain samples and soil samples were collected from different paddy fields, and the As concentrations in both the de-husked grains and the husks of the three rice cultivars were analysed to identify the safest of the three cultivars for human consumption. The results showed that the total As concentration was higher (0.09–0.21 mg As kg?1) in the de-husked grains of LAR than in the husks, while the opposite was found for the HYV rice. Moreover, the As concentration in soil samples was 2 to 5-fold higher for the LAR than for the HYVs, but the As accumulation factor (AF) was lower in the LAR (0.2–0.4%) than in the HYVs (0.9–1%). Thus, LAR can be considered the safest of the three cultivars for human consumption owing to its low AF value. Furthermore, due to the low AF, growing LAR instead of HYVs in soils with slightly elevated As levels could help improve the food safety level in the food chain.  相似文献   
7.
Environmental Science and Pollution Research - The current work aimed to investigate the degradation of the triclocarban (TCC) in aqueous solution using a modified zeolite/TiO2 composite (MZTC)...  相似文献   
8.
Environmental Science and Pollution Research - The current study aims to explore the impact of palm oil fuel ash (POFA) heat treatment on the strength activity, porosity, and water absorption of...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号