首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   1篇
环保管理   1篇
基础理论   2篇
污染及防治   4篇
  2017年   1篇
  2016年   1篇
  2010年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1980年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A biomonitoring survey using the moss species Hypnum cupressiforme Hedw. was conducted in the surroundings of two steel plants located in the North of Spain. Levels of V, Cr, Ni, Cu, Zn, As, Cd, Hg, Pb and N were determined. Very high concentrations in the areas of study were detected when compared to nearby unaffected regions. Similar trends were observed for all the elements in the differently orientated transects, showing an appreciable influence of the NW prevailing winds of the region in the dispersion of pollutants, as well as a clear decreasing gradient in the concentrations of metals in mosses within a distance of 1500 meters from the facilities. A differentiation between the elements emitted by the chimney as result of the industrial activity (V, Cr, Ni, Cu and As) and those with a high presence in steel slag deposits (Zn, Cd, Hg and Pb) was observed. The range of contamination was also established by means of the Contamination Factor, indicating a category 4 out of 6 categories, which shows the high levels reported in the areas of study. A different dynamic was registered for nitrogen regarding the rest of the heavy metals analysed except for Hg, probably due to the elevated volatility and mobility of both elements, as well as their high persistence in the atmosphere.  相似文献   
2.
The effect of inoculation with indigenous naturally occurring microorganisms (an arbuscular mycorrhizal (AM) fungus and rhizosphere bacteria) isolated from a Cd polluted soil was assayed on Trifolium repens growing in soil contaminated with a range of Cd. One of the bacterial isolate showed a marked PGPR effect and was identified as a Brevibacillus sp. Mycorrhizal colonization also enhanced Trifolium growth and N, P, Zn and Ni content and the dually inoculated (AM fungus plus Brevibacillus sp.) plants achieved further growth and nutrition and less Cd concentration, particularly at the highest Cd level. Increasing Cd level in the soil decreased Zn and Pb shoot accumulation. Coinoculation of Brevibacillus sp. and AM fungus increased shoot biomass over single mycorrhizal plants by 18% (at 13.6 mg Cd kg(-1)), 26% (at 33.0 mg Cd kg(-1)) and 35% (at 85.1 mg Cd (kg(1)). In contrast, Cd transfer from soil to plants was substantially reduced and at the highest Cd level Brevibacillus sp. lowered this value by 37.5% in AM plants. Increasing Cd level highly reduced plant mycorrhization and nodulation. Strong positive effect of the bacterium on inocula, are important in plant Cd tolerance and development in Cd polluted soils.  相似文献   
3.
The interaction between two autochthonous microorganisms (Brevibacillus brevis and Glomus mosseae) isolated from Cd amended soil increased plant growth, arbuscular mycorrhizal (AM) colonization and physiological characteristics of the AM infection (measured as SDH or ALP activities). The enhanced plant Cd tolerance after coinoculation with native microorganisms seemed to be a consequence of increased P and K acquisition and, simultaneously, of decreased concentration of Cd, Cr, Mn, Cu, Mo, Fe and Ni in plant tissue. Autochthonous microbial strains were more efficient for nutrient uptake, to immobilize metals and decrease their translocation to the shoot than reference G. mosseae (with or without bacteria). Indole acetic acid produced by B. brevis may be related to its ability for improving root growth, nodule production and AM fungal intra and extraradical development. Dehydrogenase, phosphatase and beta-glucosidase activities, indicative of microbial metabolism and soil fertility, were maximized by the coinoculation of autochthonous microorganisms in cadmium polluted conditions. As a consequence, the use of native microorganisms may result very efficient in bioremediation.  相似文献   
4.
In this study we investigated the interactions among plant, rhizosphere microorganisms and Zn pollution. We tested the influence of two bacterial strains isolated from a Zn-polluted soil on plant growth and on the symbiotic efficiency of native arbuscular mycorrhizal fungi (AMF) under Zn toxicity. The two bacterial strains exhibited Zn tolerance when cultivated under increasing Zn levels in the medium. However, strain B-I showed a higher Zn tolerance than strain B-II at the two highest Zn levels in the medium (75 and 100 mg l(-1) Zn). Molecular identification placed the strain B-I within the genus Brevibacillus. Our results showed that bacterial strain B-I consistently enhanced plant growth, N and P accumulation, as well as nodule number and mycorrhizal infection which demonstrated its plant-growth promoting (PGP) activity. This strain B-I has been shown to produce IAA (3.95 microg ml) and to accumulate 5.6% of Zn from the growing medium. The enhanced growth and nutrition of plants dually inoculated with the AMF and bacterium B-I was observed at three Zn levels assayed. This effect can be related to the stimulation of symbiotic structures (nodules and AMF colonization) and a decreased Zn concentration in plant tissues. The amount of Zn acquired per root weight unit was reduced by each one of these bacterial strains or AMF and particularly by the mixed bacterium-AMF inocula. These mechanisms explain the alleviation of Zn toxicity by selected microorganisms and indicate that metal-adapted bacteria and AMF play a key role enhancing plant growth under soil Zn contamination.  相似文献   
5.
Sand dunes are complex systems that contain several habitats, often as mosaics or transitions between types. Several of these habitats are afforded protection under European Legislation and in the UK nationally within Special Areas of Conservation (SAC) and Sites of Special Scientific Interest (SSSI). Natural England has a statutory duty to report to Europe on the conservation status and condition of sand dunes; and is required to report to the UK Government on designated sites. To achieve this we have sought ways of capturing, analysing and interpreting data on the extent and location of sand dune habitats. This requires an ability to be able to obtain data over large areas of coastline in an efficient way. Natural England and Environment Agency Geomatics have worked collaboratively for over 16 years, sharing data and ecological knowledge. In 2012 work started to evaluate the use of remote sensing to map UK BAP and Annex I sand dune habitats. A methodology has now been developed and tested to map sand dune habitats. The key objective was to provide an operational tool that will help to map these habitats and understand change on sites around England. This has been achieved through analysis of LIDAR and Compact Airborne Spectrographic Imager (CASI) data using Object Orientated Image Analysis. Quality Control (QC) and accuracy assessments have shown this approach to be successful and 11 sites have been mapped to date. These techniques are providing a new approach to monitoring change in coastal vegetation communities and informing management of protected sites.  相似文献   
6.
Book reviews     
  相似文献   
7.
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.  相似文献   
8.
This work compares the biodegradability of polyesters produced by an esterification reaction between glycerol and oleic di-acid (D 18:1) issued from green chemical pathways, via either classical thermo-chemical methods, or an enzymatic method using the immobilized lipase of Candida antartica B (Novozym 435). An elastomeric polymer synthesized by enzymatic catalysis is more biodegradable than an elastomeric thermo-chemical polyester synthesized by a standard chemical procedure. This difference lies in percentage of the dendritic motifs, in values of the degree of substitution, and certainly in cross-links inducing an hyper-branched structure less accessible to the lipolytic enzymes in a waste treatment plant. However, when the elastomeric polymer synthesized by enzymatic catalysis is processed at high temperature as required for certain industrial applications, it presents an identical rate of biodegradation than the chemical polyester. The advantages of the thermo-chemical methods are greater speed and lower cost. Enzymatic synthesis appears be suited to producing polyesters, devoid of metallic catalysts, which must be used without processing at high temperature to keep a high biodegradability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号