首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   3篇
  2022年   1篇
  2014年   2篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
A fungal consortium including Aspergillus niger, Mucor hiemalis and Galactomyces geotrichum was tested for the treatment of dairy wastewater. The bio-augmentation method was tested at lab-scale (4 L), at pilot scale (110 L) and at an industrial scale in Wastewater Treatment Plants (WWTP). The positive impact of fungal addition was confirmed when fungi was beforehand accelerated by pre-culture on whey (5 g/L lactose) or on the dairy effluent. Indeed, chemical oxygen demand (COD) removal yields increased from 55% to 75% for model medium, diluted milk. While after inoculation of an industrial biological tank from a dairy factory with the fungal consortium accelerated by pre-cultivation in a 1000 L pilot plant, the outlet COD values decreased from values above the standard one (100 mg/L) to values in the range of 50-70 mg/L. In addition, there was a clear impact of fungal addition on the ’hard’ or non-biodegradable COD owing to the significant reduction of the increase of the COD on BOD 5 ratio between the inlet and the outlet of the biological tank of WWTP. It was in the range of 451%-1111% before adding fungal consortium, and in the range of 257%-153% after bio-augmentation with fungi. An inoculated bioreactor with fungal consortium was developed at lab-scale and demonstrated successfully at pilot scale in WWTP.  相似文献   
2.
The feasibility of an electro-Fenton process to treat tylosin (TYL), a non-biodegradable antibiotic, was examined in a discontinuous electrochemical cell with divided cathodic and anodic compartments. Only 15 min electrolysis was needed for total tylosin degradation using a carbon felt cathode and a platinum anode; while 6 h electrolysis was needed to achieve high oxidation and mineralization yields, 96 and 88 % respectively. Biodegradability improvement was shown since BOD5/COD increased from 0 initially to 0.6 after 6 h electrolysis (for 100 mg L?1 initial TYL). With the aim of combining electro-Fenton with a biological treatment, an oxidation time in the range 2 to 4 h has been however considered. Results of AOS (average oxidation state) and COD/TOC suggested that the pretreatment could be stopped after 2 h rather than 4 h; while in the same time, the increase of biodegradability between 2 and 4 h suggested that this latter duration seemed more appropriate. In order to conclude, biological cultures have been therefore carried out for various electrolysis times. TYL solutions electrolyzed during 2 and 4 h were then treated with activated sludge during 25 days, showing 57 and 67 % total organic carbon (TOC) removal, respectively, namely 77 and 88 % overall TOC removal if both processes were considered. Activated sludge cultures appeared, therefore, in agreement with the assessment made from the analysis of physico-chemical parameters (AOS and COD/TOC), since the gain in terms of mineralization expected from increasing electrolysis duration appeared too low to balance the additional energy consumption.  相似文献   
3.
Environmental Science and Pollution Research - This study deals with the toxicity of the treated solutions of two types of dyes, namely, the anthraquinonic Reactive Bleu 19 dye (RB19) and the...  相似文献   
4.
Modern society grapples with large amounts of household waste. The anaerobic digestion of this waste offers a promising source for energy-rich biogas production but generates high toxic effluents that require treatment before reuse or disposal into the environment. This study aimed to investigate three techniques, namely coagulation/flocculation, electro-coagulation, and activated sludge, in terms of efficiency in the treatment of these effluents. It also aimed to assess their toxicity effects on the germination and growth of durum wheat Triticum aestivum L. seeds before and after 6 days of treatment. Activated sludge was most efficient in reducing chemical oxygen demand, turbidity, and conductivity (95.7 %, 15.8 %, and 37.5 %, respectively). The effluent treated with this technique induced a marked delay in germination (low mean time of germination) and a significant reduction in the percentages of seed germination and root and leaf growths. It was also noted to strongly induce lipid peroxidation in roots and leaves, which presumably explained the germination/growth inhibition of the wheat seeds. The effluent also induced marked lipid peroxidation effects and strongly inhibited the activities of butyrylcholinesterase in mice bone marrows. The effluent shows a high ability to inhibit the growth of three microalgae; these endpoints are useful tools to biomonitor the physico-chemical quality of this wastewater. Overall, while no significant alterations were observed in terms of animal and vegetable toxicities when the effluent was treated by coagulation/flocculation, activated sludge treatment proved efficient in reducing the toxicities induced by the untreated effluents. The results indicate that the application of this technique is promising with regards to attaining efficient, eco-friendly, and cost-effective strategies for the management and treatment of household waste.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号