首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
综合类   1篇
基础理论   1篇
污染及防治   10篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
排序方式: 共有12条查询结果,搜索用时 609 毫秒
1.
Environmental Science and Pollution Research - In this study, the photocatalytic degradation of four fungicides, myclobutanil, penconazole and difenoconazole (triazole compounds) and boscalid...  相似文献   
2.
In the present study, the photocatalytic degradation of five sulfonylurea herbicides (chlorsulfuron, flazasulfuron, nicosulfuron, sulfosulfuron and triasulfuron) has been investigated in aqueous suspensions of zinc oxide (ZnO), tungsten (VI) oxide (WO3), tin (IV) oxide (SnO2) and zinc sulfide (ZnS) at pilot plant scale under natural sunlight. Photocatalytic experiments, especially those involving ZnO photocatalysis, showed that the addition of semiconductors in tandem with the oxidant (Na2S2O8) strongly enhances the degradation rate of the herbicides in comparisons carried out with photolytic tests. The degradation of the herbicides follows a first order kinetics according to the Langmuir-Hinshelwood model. In our conditions, the amount of time required for 50% of the initial pesticide concentration to dissipate (t½) ranged from 8 to 27 min (t30W = 0.3-1.2 min) for sulfosulfuron and chlorsulfuron, respectively in the ZnO/Na2S2O8 system. None of the studied herbicides was found after 120 min of illumination (except chlorsulfuron, 0.2 μg L−1).  相似文献   
3.
Fenoll J  Ruiz E  Flores P  Hellín P  Navarro S 《Chemosphere》2011,85(8):1375-1382
Laboratory and field studies were conducted in order to determine the leaching potential of eight pesticides commonly used during pepper cultivation by use of disturbed soil columns and field lysimeters, respectively. Two soils with different organic matter content (soils A and B) were used. Additionally, soil B was amended with compost (sheep manure). The tested compounds were cypermethrin, chlorpyrifos-methyl, bifenthrin, chlorpyrifos, cyfluthrin, endosulfan, malathion and tolclofos-methyl. In soil B (lower organic matter content), only endosulfan sulphate, malathion and tolclofos-methyl were found in leachates. For the soil A (higher organic matter content) and amended soil B, pesticide residues were not found in the leachates. In addition, this paper reports on the use of common agronomic practices (solarization and biosolarization) to enhance degradation of these pesticides from polluted soil A. The results showed that both solarization and biosolarization enhanced the degradation rates of endosulfan, bifenthrin and tolclofos-methyl compared with the control. Most of the studied pesticides showed similar behavior under solarization and biosolarization conditions. However, chlorpyrifos was degraded to a greater extent in the solarization than in biosolarization treatment. The results obtained point to the interest in the use of organic amendment in reducing the pollution of groundwater by pesticide drainage and in the use of solarization and biosolarization in reducing the persistence of pesticides in soil.  相似文献   
4.
The photodegradation of indoxacarb, a broad spectrum foliar insecticide and spinosad, a natural insecticide containing two active ingredients, spinosyn A (major component) and spinosyn D (minor component), was studied in aqueous suspensions of binary (ZnO and TiO2) and ternary (Zn2TiO4 and ZnTiO3) oxides under artificial light (300–460 nm) irradiation. As expected, the influence of the semiconductor materials on the degradation of both was very significant in all cases. Photocatalytic experiments showed that the addition of semiconductors in tandem with Na2S2O8 as electron acceptor strongly improved the removal of indoxacarb and spinosad in water compared with the photolytic tests. The reaction rates significantly increased, especially for the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems. The first-order equation (monophasic model) satisfactorily explained the disappearance process, although it offered no explanation for the small concentrations remaining in the process.  相似文献   
5.
A greenhouse study was conducted to evaluate the effect of biofumigation (with sheep and chicken manure) combined with solarization on the dissipation of pesticides (pyrifenox, DDT and dieldrin), and on soil metals accumulation. The treatments consisted of a control, and soil disinfestations by biofumigation combined with solarization (B+S) for two, four, five, six consecutive years. B+S enhanced the dissipation of pyrifenox with regard to control treatment. Significant differences were not detected among plots disinfected with B+S for consecutive years. On the other hand, B+S had no effect on the dissipation of DDT and dieldrin, probably due to the resistance of these pesticides to microbial degradation and/or high temperatures. Biofumigation is considered to be an environmentally safe practice, since no accumulation of heavy metals such as Cd, Co, Cu, Cr, Pb, Ni, or Zn was observed after the subsequent application of organic matter through the treatments.  相似文献   
6.
Environmental Science and Pollution Research - We have demonstrated the potential leaching of eight compounds, one insecticide (flonicamid) and seven fungicides (myclobutanil, penconazole,...  相似文献   
7.
In this study, we examined the effect of four different organic wastes (OW)—composted sheep manure (CSM), spent coffee grounds (SCG), composted pine bark (CPB) and coir (CR)—on the potential groundwater pollution of propanil and isoxaben (herbicides), cadusafos (insecticide) and pencycuron (fungicide) under laboratory conditions. For this purpose, leaching studies were conducted using disturbed soil columns filled with a clay loam soil (Hipercalcic calcisol). The addition of organic matter (OM) drastically reduced the movement of the studied pesticides. The results obtained point to the interest in the use of agro-industrial and composted OW in reducing the groundwater pollution by pesticide drainage.  相似文献   
8.
Environmental Science and Pollution Research - One of the consequences of phytosanitary treatments applied to crops is the generation of a great volume of agro-wastewater having pesticide residues....  相似文献   
9.
A greenhouse study was conducted to evaluate the effect of biofumigation (with sheep and chicken manure) combined with solarization on the dissipation of pesticides (pyrifenox, DDT and dieldrin), and on soil metals accumulation. The treatments consisted of a control, and soil disinfestations by biofumigation combined with solarization (B+S) for two, four, five, six consecutive years. B+S enhanced the dissipation of pyrifenox with regard to control treatment. Significant differences were not detected among plots disinfected with B+S for consecutive years. On the other hand, B+S had no effect on the dissipation of DDT and dieldrin, probably due to the resistance of these pesticides to microbial degradation and/or high temperatures. Biofumigation is considered to be an environmentally safe practice, since no accumulation of heavy metals such as Cd, Co, Cu, Cr, Pb, Ni, or Zn was observed after the subsequent application of organic matter through the treatments.  相似文献   
10.
Fenoll J  Ruiz E  Hellín P  Flores P  Navarro S 《Chemosphere》2011,85(8):1262-1268
The efficiency of ZnO and TiO2 suspensions in the photocatalytic degradation of two fungicides (cyprodinil and fludioxonil) in leaching water was investigated. The experiments were carried out at pilot plant scale using compound parabolic collectors under natural sunlight. The blank experiments for both irradiated compounds solutions showed that both oxides strongly enhanced the removal of the fungicides. The addition of an oxidant (Na2S2O8) to the ZnO or TiO2 increased the rate of photooxidation. The degradation of cyprodinil and fludioxonil followed first order kinetics according to the Langmuir-Hinshelwood model. Complete degradation of both fungicides was achieved within 4 h (t30W = 18 min) when treated with illuminated ZnO. The disappearance time (DT75), when referred to the normalized illumination time (t30W), was lower than 40 and 550 min (t30W = 2 and 40 min) for both fungicides using ZnO or TiO2, respectively. ZnO appeared to be more effective in cyprodinil and fludioxonil oxidation than TiO2 probably due to its nonstoichiometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号