首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   1篇
环保管理   2篇
综合类   1篇
基础理论   2篇
污染及防治   5篇
社会与环境   1篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有11条查询结果,搜索用时 78 毫秒
1.
Contamination of aquatic ecosystems with heavy metals has been receiving increased worldwide attention due to their harmful e ects on human health and other organisms in the environment. Most of the studies dealing with toxic e ects of metals deal with single metal species, while the aquatic organisms are typically exposed to mixtures of metals. Hence, in order to provide data supporting the usefulness of freshwater fish as indicators of heavy metal pollution, it has been proposed in the present study to investigate the bioaccumulation and depuration of chromium in the selected organs of freshwater fingerlings Cirrhinus mrigala, individually and in binary solutions with nickel. The results show that the kidney is a target organ for chromium accumulation, which implies that it is also the “critical” organ for toxic symptoms. The results further show that accumulation of nickel in all the tissues of C. mrigala is higher than that of chromium. In addition, the metal accumulations of the binary mixtures of chromium and nickel are substantially higher than those of the individual metals, indicating synergistic interactions between the two metals. Theoretically the simplest explanation for an additive joint action of toxicants in a mixture is that they act in a qualitatively similar way. The observed data suggest that C. mrigala could be suitable monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.  相似文献   
2.
Application of appropriate environmentally conscious manufacturing strategies enables the sustainable development of products and processes. Automotive component manufacturers recognise the potential of applying appropriate strategies for attaining Triple Bottom Line benefits. In this context, three strategies such as eco-efficiency, waste minimisation and material efficiency are being applied to minimise environmental impacts associated with the manufacture of automotive products and its associated processes. A case study of an automotive component manufacturing firm has been exemplified. After conducting the study, the potential environmental impact was reduced by 20% and eco-efficiency was improved by 13%. Further, improvements have been observed in terms of overall resource consumption and material efficiency. The overall power consumption was reduced by 18% and weight of the component was reduced by 11%. The study aimed at improving the sustainable performance of product by incorporating green and environmentally friendlier manufacturing practices.

Abbreviations: USEPA: United Nations Environmental Protection Agency; OECD: Organisation for Economic Co-operation and Development; WBCSD: World Business Council for Sustainable Development; Eco-QFD: Environmental Quality Function Deployment; WCED: World Commission on Environment and Development; LCA: Life Cycle Assessment  相似文献   

3.
Lead is a widespread element and one of the persistent and cumulative pollutants of the environment. The present study deals with the bioaccumulation of lead and the influence of chelating agents, meso 2,3-dimercaptosuccinic acid (DMSA), D-Penicillamine and CaNa2EDTA in reducing the concentration of lead on the selected organs of Catla catla fingerlings for both acute and chronic exposures by using ICP-AES. It is inferred from the present findings that there was a correlation between environmental conditions and the heavy metal contents of the fish. The highest concentration of lead is found in kidney tissues and the lowest in muscle tissues. The accumulation pattern of lead in the selected organs of Catla catla is: kidney > liver > gill > brain > muscle. Also, it has been found that the treatment of chelating agents, DMSA, D-Penicillamine and CaNa2EDTA reduces the concentration of lead significantly for both acute and chronic exposures. The results also show that DMSA is the most effective chelator of lead in reducing the body burden of C. catla fingerlings. The observed data further indicate that C. catla could be suitable for monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.  相似文献   
4.
This study sought to evaluate the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)), the gas of greatest environmental concern to the poultry industry. Four plant species (Norway spruce, Spike hybrid poplar, Streamco willow, and hybrid willow) were planted on eight commercial farms from 2003 to 2004. Because temperature (T) can be a stressor for trees, T was monitored in 2005 with data loggers among the trees in front of the exhaust fans (11.4 to 17.7 m) and at a control distance away from the fans (48 m) during all four seasons in Pennsylvania. Norway spruce (Picea abies) foliage samples were taken in August 2005 from one turkey and two layer farms for dry matter (DM) and nitrogen (N) analysis. The two layer farms had both Norway spruce and Spike hybrid poplar (Populus deltoides x Populus nigra) plantings sampled as well allowing comparisons of species and the effect of plant location near the fans versus a control distance away. Proximity to the fans had a clear effect on spruce foliar N with greater concentrations downwind of the fans than at control distances (3.03 vs. 1.88%; P < or = 0.0005). Plant location was again a significant factor for foliar N of both poplar and spruce on the two farms with both species showing greater N adjacent to the fans compared to the controls (3.75 vs. 2.32%; P < or = 0.0001). Pooled foliar DM of both plants was also greater among those near the fans (56.17, fan vs. 44.67%, control; P < or = 0.005). Species differences were also significant showing the potential of poplar to retain greater foliar N than spruce (3.52 vs. 2.55%; P < or = 0.001) with less DM (46.00 vs. 54.83%; P < or = 0.05) in a vegetative buffer setting. The results indicated plants were not stressed by the T near exhaust fans with mean seasonal T (13.04 vs. 13.03 degrees C, respectively) not significantly different from controls. This suggested poultry house exhaust air among the trees near the fans would not result in dormancy stressors on the plants compared to controls away from the fans.  相似文献   
5.
Heavy metal discharges to aquatic environment are of great concern due to their toxicity and accumulative behavior. Zinc is an essential trace element required for different physiological functions and plays important role in cellular metabolism. However, it becomes toxic when elevated concentrations are introduced into the environment. The aim of this work is to analyze zinc induced biochemical changes in the brain tissues of Labeo rohita fingerlings using Fourier Transformation Infrared Spectroscopy. Several important features have been observed in the zinc intoxicated brain tissues, namely, altered membrane lipid, altered protein profile and decreased glycogen content, indicating an alteration in the lipid and protein profiles leading to modification in membrane composition. Further, it is observed that the acute exposure to zinc causes some alteration in protein profile with a decrease in α-helix and an increase in random coil structures.  相似文献   
6.
Mechanical and prescribed fire treatments are commonly used to reduce fuel loads and maintain or restore sagebrush steppe rangelands across the Great Basin where pinyon (Pinus) and juniper (Juniperus) trees are encroaching and infilling. Geospatial technologies, particularly remote sensing, could potentially be used in these ecosystems to (1) evaluate the longevity of fuel reduction treatments, (2) provide data for planning and designing future fuel-reduction treatments, and (3) assess the spatial distribution of horizontal fuel structure following fuel-reduction treatments. High-spatial resolution color-infrared imagery (0.06-m pixels) was acquired for pinyon and juniper woodland plots where fuels were reduced by either prescribed fire, tree cutting, or mastication at five sites in Oregon, California, Nevada, and Utah. Imagery was taken with a Vexcel UltraCam X digital camera in June 2009. Within each treatment plot, ground cover was measured as part of the Sagebrush Steppe Treatment Evaluation Project. Trimble eCognition Developer was used to classify land cover classes using object-based image analysis (OBIA) techniques. Differences between cover estimates using OBIA and ground-measurements were not consistently higher or lower for any land cover class and when evaluated for individual sites, were within ±5 % of each other. The overall accuracy and the K hat statistic for classified thematic maps for each treatment were: prescribed burn 85 % and 0.81; cut and fell 82 % and 0.77, and mastication 84 % and 0.80. Although cover assessments from OBIA differed somewhat from ground measurements, they are sufficiently accurate to evaluate treatment success and for supporting a broad range of management concerns.  相似文献   
7.
Increased participation in resource management decisions by a wide range of stakeholders has been widely advocated, and has recently been formally incorporated into the European Water Framework Directive. However, achieving such participation has generally proved to be problematical. In response to locally perceived needs, a project was set up in the Ythan catchment in northeast Scotland, to undertake catchment management actions with increased public involvement. This paper outlines the methods used to increase public participation in such actions, and some preliminary assessments of the effectiveness of these. The experience of the project and the lessons learnt, including some of the difficulties of ensuring fully representative stakeholder involvement, are discussed in relation to published criteria for public participation in resource management.  相似文献   
8.
This study sought to evaluate the potential of trees planted around commercial poultry farms to trap ammonia (NH3), the gas of greatest environmental concern to the poultry industry. Four plant species (Norway spruce, Spike hybrid poplar, Streamco willow, and hybrid willow) were planted on eight commercial farms from 2003 to 2004. Because temperature (T) can be a stressor for trees, T was monitored in 2005 with data loggers among the trees in front of the exhaust fans (11.4 to 17.7 m) and at a control distance away from the fans (48 m) during all four seasons in Pennsylvania. Norway spruce (Picea abies) foliage samples were taken in August 2005 from one turkey and two layer farms for dry matter (DM) and nitrogen (N) analysis. The two layer farms had both Norway spruce and Spike hybrid poplar (Populus deltoides × Populus nigra) plantings sampled as well allowing comparisons of species and the effect of plant location near the fans versus a control distance away. Proximity to the fans had a clear effect on spruce foliar N with greater concentrations downwind of the fans than at control distances (3.03 vs. 1.88%; P ≤ 0.0005). Plant location was again a significant factor for foliar N of both poplar and spruce on the two farms with both species showing greater N adjacent to the fans compared to the controls (3.75 vs. 2.32%; P ≤ 0.0001). Pooled foliar DM of both plants was also greater among those near the fans (56.17, fan vs. 44.67%, control; P ≤ 0.005). Species differences were also significant showing the potential of poplar to retain greater foliar N than spruce (3.52 vs. 2.55%; P ≤ 0.001) with less DM (46.00 vs. 54.83%; P ≤ 0.05) in a vegetative buffer setting. The results indicated plants were not stressed by the T near exhaust fans with mean seasonal T (13.04 vs. 13.03°C, respectively) not significantly different from controls. This suggested poultry house exhaust air among the trees near the fans would not result in dormancy stressors on the plants compared to controls away from the fans.  相似文献   
9.
This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH3) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH3 concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH3 passive dosi–tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH3 concentration h? 1 was reduced by distance from housing fans (P ≤ 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P ≤ 0.0005) and hybrid willow (3.41 vs. 3.02%; P ≤ 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P ≤ 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P ≤ 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM2.5(0.0054, 0.0054, 0.0005, and 0.0016 mg cm? 2; P ≤ 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm? 2, respectively; P ≤ 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM10 (0.0248 vs. 0.0036 mg cm? 2; P ≤ 0.0001) and PM> 10 (0.0033 vs. 0.0003 mg cm? 2; P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH3–N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.  相似文献   
10.
This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH(3) concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH(3) passive dosi-tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH(3) concentration h(- 1) was reduced by distance from housing fans (P < or = 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P < or = 0.0005) and hybrid willow (3.41 vs. 3.02%; P < or = 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P < or = 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P < or = 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM(2.5)(0.0054, 0.0054, 0.0005, and 0.0016 mg cm(- 2); P < or = 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm(- 2), respectively; P < or = 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM(10) (0.0248 vs. 0.0036 mg cm(- 2); P < or = 0.0001) and PM(> 10) (0.0033 vs. 0.0003 mg cm(- 2); P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH(3)-N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号