首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   2篇
污染及防治   6篇
评价与监测   1篇
  2022年   1篇
  2021年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Environmental Science and Pollution Research - Present work describes a laboratory study aiming at assessing the impact of sewage treatment plant (STP) effluents on fish health by means of...  相似文献   
2.
Environmental Science and Pollution Research - The effects of a composite polyphenolic-rich extract (CPRE) on ruminal fermentation, nutrient utilisation, growth performance, excretion of nitrogen...  相似文献   
3.
Pirnie EF  Talley JW  Hundal LS 《Chemosphere》2006,65(9):1576-1582
Significant concentrations of chlorinated pesticides such as 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and its two main transformation products, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) are still present in soil and sediment systems more than 30 years after DDT use was banned in the United States. DDT enters waterways via the runoff from industrial point sources, agricultural lands and atmospheric deposition. We evaluated zero-valent iron (Fe(0)), ferrous sulfide (FeS), as well as combining them with hydrogen peroxide (H(2)O(2)) as viable treatment technologies for degrading DDT in an aqueous solution. Treatment of DDT with Fe(0) and FeS resulted in approximately 88% and 56% transformation of DDT within 150h, respectively. DDE production was insignificant in all systems. The DDT removal was slower with FeS than with Fe(0), but the amounts of DDD and DDE produced did not exceed baseline. Treatment with a 1:1 mixture of Fe(0)-FeS removed about 95% of the added mass of DDT within 4days and generated significant amounts of DDD and minor amounts of DDMU. When small amounts of H(2)O(2) were introduced halfway through the Fe(0) and FeS treatment times, the mass of DDT decreased by 87% and 96%, respectively, within 2days. Our results demonstrate that mixtures of Fe(0)-FeS in combination with H(2)O(2) can be used for rapid and efficient removal of DDT from aqueous solutions.  相似文献   
4.
Environmental Science and Pollution Research - The unregulated discharge of untreated municipal sewage water to the natural water bodies is a major threat to the aquatic ecosystems. In the present...  相似文献   
5.
Groundwater is the primary source of drinking water for more than 95% of the population in Punjab. The world health organization and US Environment Protection Agency recently established a new maximum contaminant level of 10 ppb for arsenic in drinking water. The arsenic concentration of deep water tube wells located in Amritsar city used for domestic supply for urban population ranged from 3.8 to 19.1 ppb with mean value of 9.8 ppb. Arsenic content in hand pump water varied from 9 to 85 ppb with a mean value of 29.5 ppb. According to the safe limit of As, 54% and 97%, water samples collected from deep water tube wells and hand pumps, respectively, were not fit for human consumption. Arsenic content in canal water varied from 0.3 to 8.8 ppb with a mean value of 2.89 ppb. Canal water has got higher oxidation potential followed by deep tube well and hand pump water. The present study suggests the regular monitoring of arsenic content in deep tube well and shallow hand pump waters by water testing laboratories. The consumption of water having elevated concentration of As above the safe limit must be discouraged. In south-western districts of Punjab, it recommends the use of canal water for drinking purposes and domestic use by rural and urban populations than ground water sources.  相似文献   
6.
Soil solution chemistry influences the sorption and transport behavior of hydrophobic organic compounds (HOCs) in soil. We used both batch and column studies to investigate the influence of ionic strengths (0.03 and 1.5 M) and flow velocities (12 and 24 cm h-1) on sorption and transport of naphthalene (NAP) in aggregated soil. Sorption parameters such as the Freundlich coefficient (Kf) and exponent (n) calculated from batch studies and column experiments were also compared. Retardation of NAP transport was greater at higher solution ionic strength, which may be attributed to greater sorption affinity due to enhanced aggregation of the sorbent. The effect of ionic strength on sorption of NAP observed in the batch study was consistent with the results from the column study. The Kf and n values obtained from the batch study for the two ionic strengths ranged from 7.8 to 13.7 and 0.68 to 0.80, respectively, whereas the Kf and n values obtained from the column study ranged from 7.9 to 9.9 and 0.73 to 0.85, respectively. The effluent breakthrough curve (BTC) of NAP at a flow rate of 24 cm h-1 showed significant chemical and physical nonequilibrium behavior, implying that a considerable amount of sorption in aggregated soil was time dependent when flow was relatively fast. The BTCs calculated with the parameters determined from batch studies compared poorly with the measured BTCs. The potential for nonequilibrium transport should be incorporated in models used for predicting the fate and transport of HOCs. Furthermore, caution is required when extrapolating the results from batch studies, especially for aggregated soils.  相似文献   
7.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   
8.
Detectable levels of dioxins have been reported in biosolids, but very little information is available on the effect of long-term application of biosolids on dioxins accumulation in soil and uptake by plants. We analyzed dioxins in soil and corn tissue samples from field plots after 30 continuous applications of biosolids at 0 (Control), 16.8, and 67.2 Mg biosolids ha(-1) yr(-1) resulting in 0, 504, and 2016 Mg ha(-1) cumulative loadings of biosolids, respectively. The levels of dioxins in soil were only 79.9, 115.5, and 247.5 ng toxic equivalents (TEQs) kg(-1) in the 0, 504, and 2016 Mg biosolids ha(-1) plots, respectively. Dioxins were not detected in the corn grain, and only trace levels (6.8-7.5 ng TEQs kg(-1)) were found in the corn stover; however, these values were not statistically different between control and biosolids-amended soils. These observations suggest that although long-term application of biosolids may increase the levels of dioxins in soil, it does not affect dioxins uptake by corn.  相似文献   
9.
Dhillon SK  Hundal BK  Dhillon KS 《Chemosphere》2007,66(9):1734-1743
Greenhouse experiments were conducted to study the bioavailability of selenium (Se) to sorghum (Sorghum bicolor L.), maize (Zea mays L.) and berseem (Trifolium alexandrinum L.) fodders in a sandy loam soil amended with different levels of Se-rich wheat (Triticum aestivum L.) and raya (Brassica juncea L. Czern) straw containing 53.3 and 136.7microg Seg(-1), respectively. Each of the fodder crops was grown after incorporation of Se-rich materials either individually or in a sequence - sorghum-maize-berseem by incorporating Se-rich straws only to the first crop. Application of Se-rich straws to each crop, even at the greatest rate of 1%, did not have any detrimental effect on dry matter yield of different crops. With increase in the level of wheat straw from 0% to 1%, Se content in sorghum and maize plants increased to greatest level of 1.3 and 1.5microg g(-1), respectively, at 0.3% of applied straw and thereafter it decreased consistently. In case of raya straw, the greatest Se content in sorghum (2.3microg g(-1)) and maize (3.0microg g(-1)) was recorded at 0.3% and 0.4% of the applied straw, respectively. Unlike sorghum and maize fodders, Se content in all the four cuts of berseem continued to increase with increase in the level of applied straws and for different cuts of berseem it varied from 1.6 to 2.3 and 3.4 to 4.3microg g(-1) in case of wheat and raya straw, respectively. Similar variations in Se content of different fodder crops were recorded when these were grown in the sequence - sorghum-maize-berseem; but Se content was 2-4 times lower than when each crop was grown with fresh application of Se-rich straw. None of the fodders absorbed Se in levels toxic for animal consumption (>5microg g(-1)) even at the greatest level of applied straw. Of the total Se added through Se-rich straws, utilization of Se was not more than 2% in case of sorghum and maize crops and up to 5% in case of berseem. At the time of sowing of sorghum, hot water soluble Se (HWS-Se) in soils treated with different levels of Se-rich wheat and raya straw, respectively, varied from 18 to 36 and 18 to 79microg kg(-1). Whereas in case of berseem, it varied from 33 to 101 and 33 to 154microg kg(-1), respectively. HWS-Se present at the sowing time of berseem was significantly correlated with Se content of all the four cuts in the soil treated with Se-rich straws; the coefficients of correlation 'r' varied between 0.79 (p0.05) and 0.99 (p0.001). Selenium-rich materials supplied significant amounts of S, P and micronutrients to the growing fodder crops. These investigations suggest that Se-rich raya and wheat straw may be disposed off safely in soils used for growing fodders.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号