首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
环保管理   1篇
污染及防治   10篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有11条查询结果,搜索用时 241 毫秒
1.
2.
The behavior of the herbicide terbuthylazine (TA) was studied in a clay loam soil after the addition of different organic amendments (OAs). Addition of poultry compost (PC) and urban sewage sludge (USS) retarded degradation of TA with half-life values of 60.3 and 73.7 d, respectively. In contrast, addition of corn straw (CS) did not significantly alter the degradation of TA (half-life 55.5 d) compared with its degradation in nonamended soils (half-life 57.3 d). Sterilization of amended and nonamended soils resulted in a partial inhibition of TA degradation, indicating that biotic and abiotic processes are involved in TA degradation in soil. Degradation of TA led to the formation of desethyl-terbuthylazine, which was detected in low amounts (<8% of the initially applied TA) in all soils. Adsorption of TA was relatively low, with Kd values ranging from 2.31 L kg(-1) in the nonamended soil to 3.93 L kg(-1) in the soil amended with USS. In general, Kd values increased with increasing soil organic carbon content. The dissolved organic matter extracted from the OAs did not appear to interact with the pesticide or the soil surfaces, suggesting that it would not probably facilitate herbicide transport. Desorption studies indicated a slight hysteresis of TA desorption in the amended soils compared with TA desorption in the nonamended soil, which was entirely reversible. These findings might have practical implications for the environmental fate of TA in agricultural soils, where the studied OAs are commonly used.  相似文献   
3.
Rapid degradation of cadusafos was evident in soils collected from previously-treated field sites from a potato monoculture area in northern Greece. The slower degradation of cadusafos observed in corresponding antibiotic-treated soils as well as in soils from an adjacent previously-untreated field demonstrated the microbial involvement in the rapid degradation of cadusafos in the soils from the previously-treated sites. Application of the non-specific antibacterial antibiotic chloramphenicol or of the Gram+ bacteria-inhibiting antibiotics penicillin + lyncomycin + vancomycin significantly inhibited the rapid biodegradation of cadusafos suggesting that soil bacteria and probably Gram+ bacteria are mainly responsible for the rapid biodegradation of cadusafos in the specific soil. Further experiments showed that the bacterial population of the cadusafos-adapted soil was also able to rapidly degrade the chemically related nematicide ethoprophos but not fenamiphos and oxamyl. This is the first report of the occurrence of enhanced biodegradation of cadusafos in potato fields. In addition, the finding of cross-enhancement between cadusafos and ethoprophos significantly reduces the number of available chemicals which could be alternated to prevent the development of enhanced biodegradation and thus intensifies the problem in potato monoculture areas like the one in northern Greece.  相似文献   
4.
Biopurification systems (BPS) have been introduced to minimise the risk for point source contamination of natural water resources by pesticides. Their depuration efficiency relies mostly on the high biodegradation of their packing substrate (biomixture). Despite that, little is known regarding the interactions between biomixture microflora and pesticides, especially fungicides which are expected to have a higher impact on the microbial community. This study reports the dissipation of the fungicides azoxystrobin (AZX), fludioxonil (FL) and penconazole (PC), commonly used in vineyards, in a biomixture composed of pruning residues and straw used in vineyard BPS. The impact of fungicides on the microbial community was also studied via microbial biomass carbon, basal respiration and phospholipid fatty acid analysis. AZX dissipated faster (t 1/2?=?30.1 days) than PC (t 1/2?=?99.0 days) and FL (t 1/2?=?115.5 days). Fungicides differently affected the microbial community. PC showed the highest adverse effect on both the size and the activity of the biomixture microflora. A significant change in the structure of the microbial community was noted for PC and FL, and it was attributed to a rapid inhibition of the fungal fraction while bacteria showed a delayed response which was attributed to indirect effects by the late proliferation of fungi. All effects observed were transitory and a full recovery of microbial indices was observed 60 days post-application. Overall, no clear link between pesticide persistence and microbial responses was observed stressing the complex nature of interactions between pesticides in microflora in BPS.  相似文献   
5.
The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg?1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.  相似文献   
6.
7.
We studied the contribution of each of the components of a compost-based biomixture (BX), commonly used in Europe, on pesticide degradation. The impact of other key parameters including pesticide dose, temperature and repeated applications on the degradation of eight pesticides, applied as a mixture, in a BX and a peat-based biomixture (OBX) was compared and contrasted to their degradation in soil. Incubation studies showed that straw was essential in maintaining a high pesticide degradation capacity of the biomixture, whereas compost, when mixed with soil, retarded pesticide degradation. The highest rates of degradation were shown in the biomixture composed of soil/compost/straw suggesting that all three components are essential for maximum biobed performance. Increasing doses prolonged the persistence of most pesticides with biomixtures showing a higher tolerance to high pesticide dose levels compared to soil. Increasing the incubation temperature from 15 °C to 25 °C resulted in lower t(1/2) values, with biomixtures performing better than soil at the lower temperature. Repeated applications led to a decrease in the degradation rates of most pesticides in all the substrates, with the exception of iprodione and metalaxyl. Overall, our results stress the ability of biomixtures to perform better than soil under unfavorable conditions and extreme pesticide dose levels.  相似文献   
8.
Environmental Science and Pollution Research - The large quantities and the persistent nature of fungicide wastewaters have increased the efforts towards a sustainable technological solution. In...  相似文献   
9.
10.
Leaching of the organophosphorus nematicide fosthiazate   总被引:1,自引:0,他引:1  
Fosthiazate is an organophosphorus nematicide which was recently included in Annex I of the Directive 91/414/EEC under the clause that it should be used with special care in soils vulnerable to leaching. Thus, the leaching of fosthiazate was investigated in columns packed with three different soils which represented situations of high (site 2), intermediate (site 1) and low (site 3) leaching potential. The recommended dose of fosthiazate was applied at the surface of the soil columns and fosthiazate fate and transport was investigated for the next two months. Fosthiazate concentrations in the leachate collected from the bottom of the columns packed with soil from site 2 exceeded 0.1 microgl(-1) in most cases. This soil was characterized as acidic, indicating longer fosthiazate persistence, with low organic matter content, indicating weak adsorption, thus representing a situation vulnerable to leaching. In contrast, the lowest concentrations of fosthiazate in the leachate were evident in the columns packed with soil from site 3. This soil was characterized as alkaline, indicating faster degradation, with higher organic matter content, indicating stronger adsorption, thus representing a situation not favoring leaching of fosthiazate. The highest concentration of fosthiazate in the leachate from the columns packed with soil from site 2 was 3.44 microgl(-1) compared to 1.17 and 0.16 microgl(-1), which were the corresponding maximum values measured in columns packed with soil from sites 1 and 3, respectively. The results of the current study further suggest that fosthiazate is mobile in soil and can leach under conducive soil conditions like acidic soils with low organic matter content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号