首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The amendment of soil with compost may significantly influence the mobility and persistence of pesticides and thus affect their environmental fate. Factors like adsorption, kinetics, and rate of degradation of pesticides could be altered in amended soils. The aim of this study was to determine the effects of the addition of compost made from source-separated municipal waste and green waste, on the fate of triasulfuron [(2-(2-chloroethoxy)-N-[[4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide], a sulfonylurea herbicide used in postemergence treatment of cereals. Two native soils with low organic matter content were used. A series of analyses was performed to evaluate the adsorption and degradation of the herbicide in soil and in solution after the addition of compost and compost-extracted organic fractions, namely humic acids (HA), fulvic acids (FA), and hydrophobic dissolved organic matter (HoDOM). Results have shown that the adsorption of triasulfuron to soil increases in the presence of compost, and that the HA and HoDOM fractions are mainly responsible for this increase. Hydrophobic dissolved organic matter applied to the soils underwent sorption reactions with the soils, and in the sorbed state, served to increase the adsorption capacity of the soil for triasulfuron. The rate of hydrolysis of triasulfuron in solution was significantly higher at acidic pH and the presence of organic matter fractions extracted from compost also slightly increased the rate of hydrolysis. The rate of degradation in amended and nonamended soils is explained by a two-stage degradation kinetics. During the initial phase, although triasulfuron degradation was rapid with a half-life of approximately 30 d, the presence of compost and HoDOM was found to slightly reduce the rate of degradation with respect to that in nonamended soil.  相似文献   

2.
The ability of soils to adsorb and degrade pesticides strongly influences their environmental fate. This paper examines the adsorption and degradation of a weak acid, a new herbicide mesotrione 12-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione], in 15 different soils from Europe and the USA. Experiments were conducted to understand the influence of soil properties, covering a wide range of soil textures, soil pH values (4.4 to 7.5), and organic carbon contents (0.6 to 3.35%). Mesotrione adsorption (Kd values ranged from 0.13 to 5.0 L/kg) was primarily related to soil pH, and to a lesser extent by percent organic carbon (%OC). As soil pH rose. mesotrione Kd values got smaller as mesotrione dissociated from the molecular to anionic form. Mesotrione degradation (half-lives ranged from 4.5 to 32 d) was also related to soil pH, getting shorter as soil pH rose. Simple regression of mesotrione adsorption against soil pH and %OC and against degradation provided a close fit to the data. The correlation between mesotrione adsorption and degradation means that Kd and half-life values are only relevant for use in environmental fate assessment if these values are "paired" for the same soil pH and %OC. The implications were as illustrated for leaching, raising important issues about combining pesticide adsorption and degradation behavior in environmental fate assessments.  相似文献   

3.
Sorption and degradation of the herbicide 2,4-D [2,4-dichlorophenoxyacetic acid] were determined for 123 surface soils (0 to 15 cm) collected in 2002 and in 2004 between 49 degrees to 60 degrees north longitude and 110 degrees to 120 degrees west latitude in Alberta, Canada. The soils were characterized by soil organic carbon content (SOC), pH, electrical conductivity, soil texture, cation exchange capacity, carbonate content, and total soil microbial activity. The 2,4-D sorption coefficients, Kd and Koc, were highly variable with coefficients of variation of 89 and 59%, respectively, at the provincial scale. Both Kd and Koc were well described by regression models with SOC and soil pH as variables, regardless of scale. Surprisingly, variations in 2,4-D mineralization were much smaller than variations in sorption. Variability in total 2,4-D mineralization was particularly low, with a coefficient of variation of only 7% at the provincial scale. Average 2,4-D half-lives in ecoregions ranged from 1.7 to 3.5 d, much lower than the field dissipation half-life of 10 d reported for 2,4-D in general pesticide property databases. Regression models describing degradation parameters were generally poor or not significant because 2,4-D mineralization was only weakly associated with measured 2,4-D sorption parameters and soil properties. As such, regional variations in herbicide sorption coefficients should be measured or calculated based on soil properties, to assign distinct pesticide fate model input parameters when estimating 2,4-D off-site transport at the provincial scale. Spatial variations in herbicide degradation appear less important for Alberta as 2,4-D half-lives were similar in soils across the province. The rapid mineralization of 2,4-D is noteworthy because 2,4-D is widely used in Alberta and perhaps adaptation of soil microbial communities allowed for accelerated degradation regardless of soil properties or the extent of 2,4-D sorption by soil.  相似文献   

4.
Metals in soils amended with sewage sludge are typically less available compared with those in soils spiked with soluble metal salts. However, it is unclear if this difference remains in the long term. A survey of copper (Cu) availability was made in soils amended with sewage sludge, manure, and compost, collectively named organic amendments. Paired sets of amended and control soils were collected from 22 field trials where the organic amendments had aged up to 112 yr. Amended soils had higher total Cu concentrations (range, 2-220 mg Cu kg; median, 15 mg Cu kg) and organic C (range, 1-16 g kg; median, 4 g kg) than control soils. All samples were freshly spiked with CuCl, and the toxicity of added Cu to barley was compared between amended and control soils. The toxicity of added Cu was significantly lower in amended soils than in control soil in 15 sets by, on average, a factor of 1.4, suggesting that aged amendments do not largely increase Cu binding sites. The fraction of added Cu that is isotopic exchangeable Cu (labile Cu) was compared between control soils freshly spiked with CuCl and amended soils with both soils at identical total Cu concentrations. Copper derived from amendments was significantly less labile (on average 5.9-fold) than freshly added Cu in 18 sets of soils. This study shows that Cu availability after long-term applications of organic amendments is lower than that of freshly added Cu salts, mainly because of its lower availability in the original matrix and ageing reactions than because of increased metal binding sites in soil.  相似文献   

5.
The effects of adding a crushed cotton gin compost (CCGC) and a poultry manure (PM) on the enzymatic activities of a Typic Xerofluvent soil polluted with Pb were studied in the laboratory. Three hundred grams of sieved soil (<2 mm) were mixed with PM at a rate of 10% or CCGC at a rate of 17.2%, applying to the soil the same amount of organic matter with each organic amendment. Urease, protease-BBA, beta-glucosidase, alkaline phosphatase, and arylsulfatase activities were measured at four different incubation times (1, 7, 15, and 45 d) in soils containing seven concentrations (100, 250, 500, 1000, 2500, 5000, and 8000 mg kg-1) of Pb, and in the same soils amended with CCGC and PM. In all treatments and incubation times, the inhibition percentage of soil enzyme activities by Pb was lower in soils amended with the PM and CCGC than in nonamended soils, and it differed with the organic amendment. In this respect, the in the 8000 mg Pb kg-1 treatment at the end of the incubation period, the protease-BBA activity inhibition percentage was lower (14.7 and 33.9% lower, respectively) in CCGC- than in PM-amended soils. Since the adsorption capacity of Pb was higher in CCGC- than the PM-amended soils, the addition of organic wastes with higher humic acid concentration is more beneficial for remediation of soils polluted with Pb.  相似文献   

6.
Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and postemergence weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant-available water (PAW) is important for the environmental fate assessment and optimal weed management practices. The present research investigated the role of soil properties and microbial activities on the interrelated sorption and degradation processes of mesotrione in four soils by direct measurements of PAW. We found that mesotrione bound to the soils time dependently, with approximately 14 d to reach equilibrium. The 24-h batch-slurry equilibrium experiments provided the sorption partition coefficient ranging from 0.26 to 3.53 L kg(-1), depending on soil organic carbon and pH. The dissipation of mesotrione in the soil-bound phase was primarily attributed to desorption to the PAW. Degradation in the PAW was rapid and primarily dependent on microbial actions, with half-degradation time (DT(50)) <3 d in all four soils tested. The rapid degradation in the PAW became rate limited by sorption as more available molecules were depleted in the soil pore water, resulting in a more slowed overall process for the total soil-water system (DT(50) <26 d). The dissipation of mesotrione in the PAW was due to microbial metabolism and time-dependent sorption to the soils. A coupled kinetics model calibrated with the data from the laboratory centrifugation technique provided an effective approach to investigate the interrelated processes of sorption and degradation in realistic soil moisture conditions.  相似文献   

7.
The pH-dependent release of cadmium, copper, and lead from soil materials was studied by use of a stirred flow cell to quantify their release and release rates, and to evaluate the method as a test for the bonding strength and potential mobility of heavy metals in soils. Soil materials from sludge-amended and nonamended A horizons from a Thai coarse-textured Kandiustult and a Danish loamy Hapludalf were characterized and tested. For each soil sample, release experiments with steady state pH values in the range 2.9 to 7.1 and duration of 7 d were performed. The effluent was continuously collected and analyzed. Release rates and total releases were higher for the Hapludalf than the Kandiustult and higher for the sludge-amended soils than the nonamended soils. With two exceptions the relative release rates (release rate/total content of metal in soil) plotted vs. steady state pH followed the same curves for each metal, indicating similar bonding strengths. These curves could be described by a rate expression of the form: relative release rate = k[H+]a, with specific a (empirical constant) and k (rate constant) parameters for each metal demonstrating that metal release in these systems can be explained by proton-induced desorption and dissolution reactions. With decreasing pH, pronounced increases in release rates were observed in the sequence cadmium > lead > copper, which express the order of metal lability in the soils. The flow cell system is useful for comparison of metal releases as a function of soil properties, and can be used as a test to rank soils with respect to heavy metal leaching.  相似文献   

8.
The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is being considered for use as a munition, but its environmental fate and impact are unknown. The present study consisted of two main elements. First, sorption-desorption data were measured with soils and minerals to evaluate the respective contributions of organic matter and minerals to CL-20 immobilization. Second, since CL-20 hydrolyzes at a pH of >7, the effect of sorption on CL-20 degradation was examined in alkaline soils. Sorption-desorption isotherms measured using five slightly acidic soils (5.1 < pH < 6.9) containing various amounts of total organic carbon (TOC) revealed a nonlinear sorption that increased with TOC [K(d) (0.33% TOC) = 2.4 L kg(-1); K(d) (20% TOC) = 311 L kg(-1)]. Sorption to minerals (Fe(2)O(3), silica, kaolinite, montmorillonite, illite) was very low (0 < K(d) < 0.6 L kg(-1)), suggesting that mineral phases do not contribute significantly to CL-20 sorption. Degradation of CL-20 in sterile soils having different pH values increased as follows: sandy agricultural topsoil from Varennes, QC, Canada (VT) (pH = 5.6; K(d) = 15 L kg(-1); 8% loss) < clay soil from St. Sulpice, QC, Canada (CSS) (pH = 8.1; K(d) = 1 L kg(-1); 82% loss) < sandy soil provided by Agriculture Canada (SAC) (pH = 8.1, K(d) = approximately 0 L kg(-1); 100% loss). The faster degradation in SAC soil compared with CSS soil was attributed to the absence of sorption in the former. In summary, CL-20 is highly immobilized by soils rich in organic matter. Although sorption retards abiotic degradation, CL-20 still decomposes in soils where pH is >7.5, suggesting that it will not persist in even slightly alkaline soils.  相似文献   

9.
The mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) is used as a preplant soil fumigant. In comparison with individual fumigants, application of a mixture may affect the environmental dissipation and fate of each chemical, such as emission and degradation. We investigated the degradation of CP, 1,3-D, and their mixture in fresh soils and sterile soils, and evaluated the competitive characteristic of fumigants in the mixture. The degradation of low concentrations of CP in fresh soil was accelerated at early times in the presence of 1,3-D, whereas the addition of CP reduced the degradation rate of trans-1,3-D, possibly by inhibiting the activity of trans-1,3-D degrading microorganisms. The potential of applying amendments to the soil to increase the rate of CP and 1,3-D degradation was also illustrated. The degradation of both fumigants was significantly enhanced in soils amended with ammonium thiosulfate (ATS) and sodium diethyldithiocarbamate (Na-DEDTC) compared with unamended soil. Competitive degradation was observed for CP in amended soils in the presence of 1,3-D. The degradation of cis-1,3-D in amended soils spiked as a mixture of 1,3-D and CP was repressed compared with the rate of degradation in samples spiked with 1,3-D only. This implied that in abiotic degradation, CP and cis-1,3-D competed for a limited number of reaction sites in amended soil, resulting in decreased degradation rates. No significant influence of fumigant mixtures was observed for trans-1,3-D in amended soil.  相似文献   

10.
Copper sulfate (CuSO4) is applied periodically to commercial channel catfish (Ictalurus panctatus) ponds as an algicide or parasiticide. Current understanding of the chemistry of copper in soil-water systems suggests that copper may accumulate in pond sediments, although the forms and potential bioavailability of copper in catfish pond sediments are not known. This study investigated the accumulation and distribution of copper in the sediment of catfish ponds receiving periodic additions of CuSO4.5H2O. All ponds were constructed in Sharkey (very-fine, smectitic, thermic Chromic Epiaquert) soil. Nine 0.40-ha ponds received 59 applications of 2.27 kg CuSO4.5H2O per application per pond over 3 yr; no CuSO4.5H2O applications were made to nine additional ponds. Total Cu concentration in the sediments of CuSO4.5H2O-amended catfish ponds (172.5 mg kg(-1)) was four to five times higher than that in the sediments of nonamended ponds (36.1 mg kg(-1)). Copper accumulated in catfish pond sediments at a rate of 41 microg kg(-1) dry sediment for each 1 kg ha(-1) of CuSO4. 5H2O applied to ponds. Copper in the sediments of amended ponds was mainly in the organic matter-bound (30.7%), carbonate-bound (31.8%), and amorphous iron oxide-bound (22.1%) fractions with a considerable fraction (3.4%; 3 to 8 mg kg(-1)) in soluble and exchangeable fractions. This indicates that Cu accumulates differentially in various fractions, with proportionally greater initial accumulation in potentially bioavailable forms. However, toxicity bioassays with amphipods (Hyallela azteca) and common cattail (Typha latifolia L.) indicated that the effect of exposure to amended or nonamended pond sediments was not different.  相似文献   

11.
N-nitrosodimethylamine (NDMA), a potential carcinogen, was commonly found in treated wastewater as a by-product of chlorination. As treated water is increasingly used for landscape irrigation, there is an imperative need to understand the leaching risk for NDMA in landscape soils. In this study, adsorption and incubation experiments were conducted using landscape soils planted with turfgrass, ground cover, and trees. Adsorption of NDMA was negligibly weak (K(d) < 1) in all soils, indicating that NDMA has a high potential for moving with percolating water in these soils. Degradation of NDMA occurred at different rates among these soils. At 21 degrees C, the half-life (t(1/2)) of NDMA was 4.1 d for the ground cover soil, 5.6 d for the turfgrass soil, and 22.5 d for the tree soil. The persistence was substantially prolonged after autoclaving or when incubated at 10 degrees C. The rate of degradation was not significantly affected by the initial NDMA concentration or addition of organic and inorganic nutrient sources. The relative persistence was inversely correlated with soil organic matter content, soil microbial biomass, and soil dehydrogenase activity, suggesting the importance of microorganisms in NDMA degradation in these soils. These results suggest that the behavior of NDMA depends closely on the vegetation cover in a landscape system, and prolonged persistence and increased leaching may be expected in soils with sparse vegetation due to low organic matter content and limited microbial activity.  相似文献   

12.
Field history and dissipation of atrazine and metolachlor in Colorado   总被引:1,自引:0,他引:1  
Farmers in eastern Colorado have commented that atrazine does not provide the length of weed control that they expected in fields that have received multiple applications of the herbicide. Multiple laboratory studies suggest that atrazine dissipates more rapidly in soils with a history of atrazine use compared with soils that had not been treated with the herbicide and this could be related to the above observation. Field and laboratory studies were conducted to determine the rate of dissipation of atrazine and metolachlor in fields in Colorado. The published half-lives of atrazine and metolachlor are 60 and 56 d, respectively. In the field studies, the half-lives of atrazine and metolachlor in the top 15 cm of the soil ranged between 3.5 and 7.2 d and 17.9 and 18.8 d, respectively. In laboratory studies, the half-life of atrazine varied from 1.4 to 19.8 d with the shortest half-life occurring in soils which had been treated with atrazine for at least 5 yr. The longest half-life was in a soil that had never received atrazine. The half-life of metolachlor in these same soils varied from 10.6 to 28.2 d. There was no apparent relationship between the half-life of metolachlor and the half-life of atrazine in the laboratory studies. These results confirm farmers' observation of the shorter residual activity of atrazine in Colorado fields receiving atrazine over multiple years.  相似文献   

13.
The knowledge of acid-base characteristics of humic acid (HA) and fulvic acid (FA) fractions of organic amendments and amended soils is of considerable importance for assessing their agronomic efficacy and environmental impact. In this work, the acid-base properties of HAs and FAs isolated from pig slurry, soils amended with either 90 or 150 m(3) ha(-1) yr(-1) of pig slurry for 3 yr, and the corresponding nonamended control soil were investigated by using a current potentiometric titration method. The nonideal competitive adsorption (NICA) model that describes proton binding by two classes of binding sites (carboxylic- and phenolic-type groups) was successfully fit to titration data. With respect to the control soil HA and FA, pig-slurry HA and FA were generally characterized by smaller carboxylic-type group contents, slightly smaller phenolic-type group contents, larger affinities for proton binding by the carboxylic-type groups, and much smaller, in the case of the HA fraction, or similar, in the case of the FA fraction, affinities for proton binding by the phenolic-type groups. Amendment with pig slurry determined a number of modifications in soil HAs and FAs, including decrease of acidic functional group contents, and slight increase of the proton affinity of the carboxylic-type groups. Further, a slight decrease of the affinities for proton binding by the phenolic-type groups of HAs was observed. These effects can have a large impact on the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in pig slurry-amended soils.  相似文献   

14.
Cadmium (Cd) distribution between the soil solid phase and the soil solution is a key issue in assessing the environmental effect of Cd in the terrestrial environmental. Previous studies have shown that many individual minerals and other components found in soils can bind Cd, but most studies on whole soil samples have shown that pH is the main parameter controlling the distribution. To identify further the components that are important for Cd binding in soil we measured Cd distribution coefficients (Kd) at two fixed pH values and at low Cd loadings for 49 soils sampled in Denmark. The Kd values for Cd ranged from 5 to 3000 L kg(-1). The soils were described pedologically and characterized in detail (22 parameters) including determination of contents of the various minerals in the clay fraction. Correlating parameters were grouped and step-wise regression analysis revealed that the organic carbon content was a significant variable at both pH values. Cation exchange capacity (CEC) and gibbsite were important at the low pH (5.3) while iron oxides also were important at the high pH (6.7). None of the other clay minerals present in the soils (illite, smectite, kaolinite, hydroxy interlayered clay minerals [HIM], chlorite, quartz, microcline, plagioclase) were significant in explaining the Cd distribution coefficient.  相似文献   

15.
A study of the desorption of atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) and linuron [1-methoxy-1-methyl-3-(3,4-dichlorophenyl)urea] adsorbed on soils with different organic matter (OM) and clay contents was conducted in water and in the presence of the non-ionic surfactant Triton X-100 at different concentrations. The aim was to gain insight into soil characteristics in surfactant-enhanced desorption of herbicides from soils. Adsorption and desorption isotherms in water, in all Triton X-100 solutions for atrazine, and in solutions of 0.75 times the critical micelle concentration (cmc) and 1.50cmc for linuron fit the Freundlich equation. All desorption isotherms showed hysteresis. Hysteresis coefficients decreased for linuron and increased or decreased for atrazine in Triton X-100 solutions. These variations were dependent on surfactant concentration and soil OM and clay contents. In the soil-water-surfactant system desorption of linuron from all soils was always greater than in the soil-water system but for atrazine this only occurred at concentrations higher than 50cmc. For the highest Triton X-100 concentration (100cmc), the desorption of the most hydrophobic herbicide (linuron) was increased more than 18-fold with respect to water in soil with an OM content of 10.3% while the atrazine desorption was increased 3-fold. The effect of Triton X-100 on the desorption of both herbicides was very low in soil with a high clay content. The results indicate the potential use of Triton X-100 to facilitate the desorption of these herbicides from soil to the water-surfactant system. They also contribute to better understanding of the interactions of different molecules and surfaces in the complex soil-herbicide-water surfactant system.  相似文献   

16.
This research examined the fate of polydimethylsilicones (PDMS) in agricultural test plots amended with municipal biosolids. This 4 yr field study involved addition of 0, 15, and 100 Mg ha(-1) of municipal biosolids, which contained ambient concentrations of PDMS (1272 mg kg(-1) biosolids), to corn and soybean test plots. Soil samples collected at intermittent time intervals were analyzed for soil water, soil organic C, extractable PDMS and PDMS hydrolysis products. Above normal precipitation during the field study maintained soil water levels in excess of 100 g kg(-1) for most of the testing period of 1994-1998. Under these conditions half-lives for PDMS (based on field dissipation data) ranged from 876 to 1443 d. When biosolids amended soil samples were brought into the laboratory and subjected to more rapid drying, >80% of the PDMS was transformed to lower molecular weight hydrolysis products within 20 d. No difference in relative PDMS transformation rates were evident for soils that received PDMS in the form of a biosolids amendment or directly dosed to the soil (in the absence of biosolids) indicating little if any effect of direct PDMS-biosolids interactions on PDMS transformation rates. These results support that the overriding factor controlling the fate of PDMS in field soils is the soil moisture content.  相似文献   

17.
Applications of manures to agricultural fields have increased soil test values for P to high levels in parts of the USA and thus increased the likelihood that P will be transported to surface water and degrade its quality. Waste paper applications to soils with high STP (soil test P) may decrease the risk of P transport to surface water by decreasing DRP (dissolved reactive P) by the formation of insoluble Al-P complexes and providing organic matter to improve infiltration. A field experiment was conducted near Booneville, AR (USA) to assess the effects of different rates of a waste paper product addition on STP, soil bulk density, and total soil C with a soil with approximately 45 mg Bray1-P kg-1 soil (dry weight). A Leadvale silt loam soil (fine-silty, siliceous, thermic Typic Fragiudult) was amended with 0, 22, 44, or 88 Mg waste paper product ha-1 to supply approximately 90, 170, or 350 kg Al ha-1, respectively. One year after additions, there was a strong negative correlation between waste paper product application rates and soil bulk density, and a strong positive correlation between rates and total soil C content. Soil bulk density and total C 2 yr after additions, and soil DRP and Bray1-P were not affected by waste paper additions. These results support the hypothesis that decreases in DRP in runoff from soils receiving waste paper additions were probably due to changes in soil organic matter and bulk density, rather than changes in the chemical forms of soil P.  相似文献   

18.
Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition.  相似文献   

19.
The effect of the addition of spent mushroom substrate (SMS) to the soil as an amendment on the distribution and/or fate of copper from a copper-based fungicide applied to a vineyard soil in La Rioja (N. Spain) was studied. The study was carried out on experimental plots amended or not with SMS at rates of 40 and 100 t ha(-1). The variation in total Cu content in the topsoil (0-10 cm) and in the soil profile (0-50 cm), and the distribution of Cu in different fractions of the topsoil were studied as a function of the dose of Cu added (5 and 10 kg ha(-1)) and of the time elapsed since application (0-12 months). In addition, the changes in the chemical properties (solid organic carbon (OC), dissolved organic carbon (DOC) and pH) of the soils were studied. A greater capacity for Cu retention by the amended soils than by the unamended one was observed only when the fungicide was applied at the high dose. No effect of the amendment rate was noted on this retention capacity. The metal content in the topsoil decreased over time in step with the disappearance of the OC in the amended soil due to its oxidation, mineralization and/or leaching. This decrease in total Cu content was possibly due to the formation of soluble Cu complexes with the DOC, which facilitated its transport through the soil. A re-distribution of Cu in the different soil fractions was also observed over time, mainly from the organic to the residual fraction. The results obtained indicate that the increase in OC due to the application of SMS at the rates used does not lead to any significant increase in the persistence of Cu in the soil over time. Of greater interest would be the assessment of the risk for groundwater quality, owing to possible leaching of the fungicide enhanced by the SMS when SMS and Cu-based fungicides are jointly applied to vineyard soils.  相似文献   

20.
Increased attention to ground water contamination has encouraged an interest in mechanisms of solute transport through soils. Few studies have investigated the effect of the initial soil water content on the transport and degradation of herbicides for claypan soils. We investigated the effect of claypan soils at initial field capacity vs. permanent wilting level on atrazine and alachlor transport. The soil studied was Mexico silt loam (fine, smectitic, mesic Aeric Vertic Epiaqualf) with a subsoil clay content, primarily montmorillonite, of >40%. Strontium bromide, atrazine, and alachlor were applied to plots; half were at field capacity (Wet treatment), and half were near the permanent wilting point (Dry treatment). Soil cores were removed at selected depths and times, and cores were analyzed for bromide and herbicide concentrations. Bromide, atrazine, and alachlor were detected at the 0.90-m depth in dry plots within 15 d after experiment initiation. Bromide was detected 0.15 m deeper (P < 0.05) in the Dry compared with the Wet treatment at 1, 7, and 60 d after application and >0.30 m deeper (P < 0.01) in the Dry treatment at 15 and 30 d after application; similar treatment results were found for atrazine and alachlor, although on fewer dates with significant differences. The mobility order of the applied chemicals was bromide > atrazine > alachlor. The atrazine apparent half-life was significantly longer in the Dry plots compared with the Wet plots. The retardation factor determined from the relative velocity of each herbicide to that of bromide was higher for alachlor than for atrazine. This study identifies the impact that shrinkage cracks have for different moisture conditions on preferential transport of herbicides in claypan soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号