首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   1篇
基础理论   3篇
污染及防治   6篇
  2010年   1篇
  2009年   2篇
  1999年   2篇
  1997年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.  相似文献   
4.
The advantages and disadvantages, benefits and limitations, of a number of published mathematical models representing the effects of ozone on crops and native vegetation are described. Several levels of modeling are addressed: word models, graphic models, mathematical models, and computer simulation implementation. Special attention is given to evaluating: (1) how the interaction between ozone exposure and vegetation effects is quantified, (2) the status of field testing of the model, and (3) the adequacy of information for enabling other investigators to replicate the model for further testing. Original contributions, not previously published, are made in this evaluation in the form of: (1) graphic model flow charts for published models, (2) clarification of mathematical equations for existing models, (3) graphic forms of functional relations comprising portions of models, and (4) graphic displays of model output performance versus observed data. The models that are evaluated cover acute exposure-response models, statistical and mechanistic-process models, including a partial model of ambient exposure versus ozone flux, and uptake. They also cover chronic exposure statistical approaches, including time-series modeling, mechanistic-process models, 'disintegrated' models of forest system simulations, chronic flux density-uptake-response, and models for regional effects assessment in forests and agricultural lands.  相似文献   
5.
Abstract: Species occurrence in a habitat patch depends on local habitat and the amount of that habitat in the wider landscape. We used predictions from empirical landscape studies to set quantitative conservation criteria and targets in a multispecies and multiscale conservation planning effort. We used regression analyses to compare species richness and occurrence of five red‐listed lichens on 50 ancient oaks (Quercus robur; 120–140 cm in diameter) with the density of ancient oaks in circles of varying radius from each individual oak. Species richness and the occurrence of three of the five species were best explained by increasing density of oaks within 0.5 km; one species was best explained by the density of oaks within 2 km, and another was best predicted by the density of oaks within 5 km. The minimum numbers of ancient oaks required for “successful conservation” was defined as the number of oaks required to obtain a predicted local occurrence of 50% for all species included or a predicted local occurrence of 80% for all species included. These numbers of oaks were calculated for two relevant landscape scales (1 km2 and 13 km2) that corresponded to various species responses, in such a way that calculations also accounted for local number of oaks. Ten and seven of the 50 ancient oaks surveyed were situated in landscapes that already fulfilled criteria for successful conservation when the 50% and 80% criteria, respectively, were used to define the level of successful conservation. For cost‐efficient conservation, oak stands in the landscapes most suitable for successful conservation should be prioritized for conservation and management (e.g., grazing and planting of new oaks) at the expense of oak stands situated elsewhere.  相似文献   
6.
The status of computer simulation models from around the world for evaluating the possible ecological, environmental, and societal consequences of global change is presented in this paper. In addition, a brief synopsis of the state of the science of these impacts is included. Issues considered include future changes in climate and patterns of land use for societal needs. Models discussed relate to vegetation (e.g. crop), soil, bio-geochemistry, water, and wildlife responses to conventional, forecasted changes in temperature and precipitation. Also described are models of these responses, alone and interactively, to increased CO(2), other air pollutants and UV-B radiation, as the state of the science allows. Further, models of land-use change are included. Additionally, global multiple sector models of environment, natural resources, human population dynamics, economics, energy, and political relations are reviewed for integrated impact assessment. To the extent available, information on computer software and hardware requirements is presented for the various models. The paper concludes with comments about using these technologies as they relate to ecological risk assessment for policy decision analysis. Such an effort is hampered by considerable uncertainties with the output of existing models, because of the uncertainties associated with input data and the definitions of their dose-response relationships. The concluding suggestions point the direction for new developments in modeling and analyses that are needed for the 21st century.  相似文献   
7.
The attack rates, brood survival, and emergence rates of the western pine beetle, Dendroctonus brevicomis LeConte, and incidence of entomophagus associates, were compared between photochemical oxidant damaged, and apparently healthy, ponderosa pine trees, Pinus ponderosa Dougl. ex Laws in the San Bernardino Forest in Southern California. The results from this study suggest that oxidant-damaged trees attacked by western pine beetle produced about the same total brood with lower initial attacks when compared with healthier trees, whereas the numbers of predators and parasitoids were higher in the healthier trees. This higher productivity trend for western pine beetle is most evident in trees attacked by the first beetle generation. Trees attacked by the second generation, both damaged and healthy, produced much less western pine beetle brood than generation 1 attacked trees, regardless of oxidant damage. The implication of these results is that, in stands with a higher proportion of oxidant damaged trees, a given population of western pine beetle could kill more trees, and increase at a greater rate, than in a stand with a lower proportion of damaged trees.  相似文献   
8.
In this paper an analysis is provided on: what we know, what we need to know, and what we need to do, to further our understanding of the relationships between tropospheric ozone (O(3)), global climate change and forest responses. The relationships between global geographic distributions of forest ecosystems and potential geographic regions of high photochemical smog by the year 2025 AD are described. While the emphasis is on the effects of tropospheric O(3) on forest ecosystems, discussion is presented to understand such effects in the context of global climate change. One particular strong point of this paper is the audit of published surface O(3) data by photochemical smog region that reveals important forest/woodland geographic regions where little or no O(3) data exist even though the potential threat to forests in those regions appears to be large. The concepts and considerations relevant to the examination of ecosystem responses as a whole, rather than simply tree stands alone are reviewed. A brief argument is provided to stimulate the modification of the concept of simple cause and effect relationships in viewing total ecosystems. Our knowledge of O(3) exposure and its effects on the energy, nutrient and hydrological flow within the ecosystem are described. Modeling strategies for such systems are reviewed. A discussion of responses of forests to potential multiple climatic changes is provided. An important concept in this paper is that changes in water exchange processes throughout the hydrological cycle can be used as early warning indicators of forest responses to O(3). Another strength of this paper is the integration of information on structural and functional processes of ecosystems and their responses to O(3). An admitted weakness of this analysis is that the information on integrated ecosystem responses is based overwhelmingly on the San Bernardino Forest ecosystem research program of the 1970s because of a lack of similar studies. In the final analysis, it is recommended that systems ecology be applied in examining the joint effects of O(3), carbon dioxide and ultraviolet-B radiation on forest ecosystems.  相似文献   
9.
A number of empirical (statistical, regression oriented) and mechanistic (process oriented) models are presently available to examine the relationship between air pollution stress and plant response. These models have their strengths and weaknesses. In all these models, a major concern is the numerical definition of the pollutant exposure kinetics (dose). At present there are no numerical definitions of dose which make satisfactory biological sense. A key issue is the existence of a biological time clock where plants respond differently to the pollutant stress at different stages of their growth. On the other hand, policy makers and regulatory personnel prefer a simple approach which would facilitate implementation and administration of ambient air quality standards. Long-term air pollutant averaging techniques create artifacts due to the non-normal distribution of ambient concentrations. A more appropriate approach may be the use of 'median' and 'percentiles' computed from short duration pollutant concentrations. Such an approach would be free of the influence of the non-normal distribution, but would require the development of appropriate exposure-response models. Any transfer of results from unit level models to regional level leads to 'scaling error'. There is no general agreement among researchers on how to deal with the scale problem. While this situation persists, any policy formulated on regional impact assessment must acknowledge the uncertainty.  相似文献   
10.
Groups involved in the livestock vs large carnivore conflict hold widely divergent attitudes toward carnivores, yet they all endorse general ecocentric values. The hypothesis that contrasting motives for the endorsement of ecocentric values may mediate between the general values and attitudes toward carnivores was evaluated in a survey among sheep farmers, wildlife managers, and research biologists in Norway. Results showed positive associations between anthropocentrism and negative attitudes toward carnivores, and between ecocentrism and positive attitudes toward carnivores for all three groups. Farmers, relative to the other groups, scored lowest on the ecocentric and highest on the anthropocentric subscales, as operationalized by Thompson and Barton (1994). This result may be interpreted within a cognitive hierarchy model where environmental beliefs may transform general ecocentric values into negative or positive attitudes toward one specific environmental category.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号