首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
基础理论   2篇
污染及防治   4篇
  2021年   1篇
  2017年   1篇
  2013年   2篇
  2011年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
Today’s heavy-duty natural gas–fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas–fueled vehicles has been identified as a concern. Since today’s heavy-duty natural gas–fueled fleet penetration is low, today’s total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas–fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These “pump-to-wheels”(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions.

Implications: Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.  相似文献   

2.
ABSTRACT

Emissions levels from current gasoline spark-ignited engines are low, and emissions changes associated with the blending of ethanol into gasoline are small and difficult to quantify. Addition of ethanol, with a high blending octane number, allows a reduction in aromatics in market gasoline. Blending behavior of ethanol is nonlinear, altering the distillation curve, including the 50% temperature point, T50. Increase in gasoline direct injection (GDI) engine technology in the fleet challenges ability of older models based on port fuel injection (PFI) results to predict the overall air quality impact of ethanol blending. Five different models derived from data collected through U.S. Environmental Protection Agency Energy Policy Act (EPAct) programs were used to predict LA92 Phase 1 particulate matter (PM) emissions for summer regular (SR) E0 (gasoline with 0% ethanol by volume), E10 (gasoline with 10% ethanol) and E15 (gasoline with 15% ethanol). Substantial reductions of PM for E10 and E15 relative to E0 were predicted when aromatics were displaced by ethanol to maintain octane rating. SR E0 and E10 were also matched to linear combinations of EPAct fuels and results showed a 35% PM reduction for SR E10 relative to SR E0. For GDI vehicles the Coordinating Research Council (CRC) E-94-3 study found that E10 had 23% or 29% PM increase. However, CRC E-129 found an E10 PM reduction of 10% when one E0 fuel and its splash blended (SB) E10 were compared. Both CRC project E-129 SB data and fuel triplets selected from the EPAct study showed variation for E15 emissions, although E-129 suggests that E15 in GDI offers about a 25% reduction of PM with respect to E0. Overall, data suggest that ethanol blending offers a modest to a substantial reduction of cold-start PM mass if aromatic levels of the finished products are reduced in response to ethanol addition.

Implications: Studies of exhaust emissions effects of ethanol blending with gasoline vary in conclusions. Blending properties are nonlinear. Modeling of real-world emissions effects must consider all fuel composition adjustments and property changes associated with ethanol addition. Aromatics are reduced in E10 or E15, compared with E0, and distillation changes. PFI-derived models show reductions in cold-start PM for expected average E10 versus E0 pump fuel, due to reduced aromatic content. Relative emissions effects from older technology (PFI) engines do not predict newer engine (GDI) results reliably, but recent GDI data show reduced cold-start PM when ethanol displaces aromatics.  相似文献   
3.
4.
ABSTRACT

In-use emissions from vehicles using heavy-duty diesel engines can be significantly higher than the levels obtained during engine certification. These higher levels may be caused by a combination of degradation of engine components, poor engine maintenance, degradation or failure of emissions after-treatment devices, and engine and emissions system tampering. A direct comparison of in-use vehicle emissions with engine certification levels, however, is not possible without removing an engine from the vehicle in order to perform engine dynamometer emissions testing. The goal of this research was to develop a chassis test procedure that mimics the engine performance, and as such the expected emissions levels, from the engine certification emissions test prescribed in the U.S. Code of Federal Regulations. Emissions measurements were taken from two engines during testing on an engine dynamometer using the transient heavy-duty Federal Test Procedure (FTP). Additionally, each engine was installed in an appropriate vehicle, and emissions measurements were taken using a chassis dynamometer while employing a vehicle driving schedule  相似文献   
5.
Abstract: The important role of humans in the development of current ecosystems was recognized decades ago; however, the integration of history and ecology in order to inform conservation has been difficult. We identified four issues that hinder historical ecological research and considered possible solutions. First, differences in concepts and methods between the fields of ecology and history are thought to be large. However, most differences stem from miscommunication between ecologists and historians and are less substantial than is usually assumed. Cooperation can be achieved by focusing on the features ecology and history have in common and through understanding and acceptance of differing points of view. Second, historical ecological research is often hampered by differences in spatial and temporal scales between ecology and history. We argue that historical ecological research can only be conducted at extents for which sources in both disciplines have comparable resolutions. Researchers must begin by clearly defining the relevant scales for the given purpose. Third, periods for which quantitative historical sources are not easily accessible (before AD 1800) have been neglected in historical ecological research. Because data from periods before 1800 are as relevant to the current state of ecosystems as more recent data, we suggest that historical ecologists actively seek out data from before 1800 and apply analytic methods commonly used in ecology to these data. Fourth, humans are not usually considered an intrinsic ecological factor in current ecological research. In our view, human societies should be acknowledged as integral parts of ecosystems and societal processes should be recognized as driving forces of ecosystem change.  相似文献   
6.
In-use emissions from vehicles using heavy-duty diesel engines can be significantly higher than the levels obtained during engine certification. These higher levels may be caused by a combination of degradation of engine components, poor engine maintenance, degradation or failure of emissions after-treatment devices, and engine and emissions system tampering. A direct comparison of in-use vehicle emissions with engine certification levels, however, is not possible without removing an engine from the vehicle in order to perform engine dynamometer emissions testing. The goal of this research was to develop a chassis test procedure that mimics the engine performance, and as such the expected emissions levels, from the engine certification emissions test prescribed in the U.S. Code of Federal Regulations. Emissions measurements were taken from two engines during testing on an engine dynamometer using the transient heavy-duty Federal Test Procedure (FTP). Additionally, each engine was installed in an appropriate vehicle, and emissions measurements were taken using a chassis dynamometer while employing a vehicle driving schedule intended to match closely the instantaneous torque and speed schedule of the engine FTP. Engine and chassis testing was performed with the engines in stock (unmodified) condition as well as in several modes to simulate either tampered or poorly maintained conditions. The use of a chassis test as a predictive tool for determining whether an engine in a vehicle would pass the engine certification test has proven to be worthwhile. Analysis of the data shows that identification of chassis-mounted engines with NOx emissions above certification levels is possible by employing engine-specific correction factors. In the case of PM emissions, significant data scatter allowed only the identification of gross PM emitters. Engine tampering and poor maintenance can raise PM and NOx emissions, and these increases can be correctly identified by a chassis test. Analysis of chassis and engine CO and HC emissions did not reveal a strong enough correlation to warrant the use of the chassis test for emissions screening of these two pollutants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号