首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   2篇
污染及防治   6篇
  2021年   1篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有8条查询结果,搜索用时 500 毫秒
1
1.
Air pollutants are recognised as important agents of ecosystem change but few studies consider the effects of multiple pollutants and their interactions. Here we use ordination, constrained cluster analysis and indicator value analyses to identify potential environmental controls on species composition, ecological groupings and indicator species in a gradient study of UK acid grasslands. The community composition of these grasslands is related to climate, grazing, ozone exposure and nitrogen deposition, with evidence for an interaction between the ecological impacts of base cation and nitrogen deposition. Ozone is a key agent in species compositional change but is not associated with a reduction in species richness or diversity indices, showing the subtly different drivers on these two aspects of ecosystem degradation. Our results demonstrate the effects of multiple interacting pollutants, which may collectively have a greater impact than any individual agent.  相似文献   
2.
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.  相似文献   
3.
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.  相似文献   
4.
Semi-natural calcareous and acidic grasslands are known to be sensitive to increased atmospheric N deposition. However, the fate of pollutant N within these systems is unknown. This paper reports on the first studies to determine the fate of added N within a calcareous and an acidic grassland subject to long-term simulated enhanced N deposition. Intact soil/turf cores were removed from field plots treated for six years with enhanced N deposition (ambient +0, +35 and +140 kg N ha?1 year?1). Cores were inserted into lysimeters and output fluxes of N were monitored in detail. Complete N budgets—calculated from the N flux data—showed considerable accumulation of N within the treated grasslands, up to 76% and 38% of pollutant N in the calcareous and acidic grasslands respectively. In the second study, the short-term (21 day) fate of pollutant N was determined by tracing 15N labelled ammonium nitrate (+35 kg N ha?1 year?1) though the acidic and calcareous lysimeters into plant, soil and leachate pools. Up to 91% and 59% of 15N was recovered in soils and vegetation of the calcareous and acidic grasslands respectively, with negligible amounts recovered in soil extractable ammonium and nitrate (<0.3%) and in leachate (<0.02%). This rapid short-term immobilisation of pollutant N supports the long-term accumulation of the element calculated from the N flux study.  相似文献   
5.
Semi-natural calcareous and acidic grasslands are known to be sensitive to increased atmospheric N deposition. However, the fate of pollutant N within these systems is unknown. This paper reports on the first studies to determine the fate of added N within a calcareous and an acidic grassland subject to long-term simulated enhanced N deposition. Intact soil/turf cores were removed from field plots treated for six years with enhanced N deposition (ambient +0, +35 and +140 kg N ha–1 year–1). Cores were inserted into lysimeters and output fluxes of N were monitored in detail. Complete N budgets—calculated from the N flux data—showed considerable accumulation of N within the treated grasslands, up to 76% and 38% of pollutant N in the calcareous and acidic grasslands respectively. In the second study, the short-term (21 day) fate of pollutant N was determined by tracing 15N labelled ammonium nitrate (+35 kg N ha–1 year–1) though the acidic and calcareous lysimeters into plant, soil and leachate pools. Up to 91% and 59% of 15N was recovered in soils and vegetation of the calcareous and acidic grasslands respectively, with negligible amounts recovered in soil extractable ammonium and nitrate (<0.3%) and in leachate (<0.02%). This rapid short-term immobilisation of pollutant N supports the long-term accumulation of the element calculated from the N flux study.  相似文献   
6.
The microbial role in hot spring silicification   总被引:8,自引:0,他引:8  
Recent experimental studies indicate that microorganisms play a passive role in silicification. The organic functional groups that comprise the outer cell surfaces simply serve as heterogeneous nucleation sites for the adsorption of polymeric and/or colloidal silica, and because different microorganisms have different cell ultrastructural chemistry, species-specific patterns of silicification arise. Despite their templating role, they do not appear to increase the kinetics of silicification, and at the very most, they contribute only marginally to the magnitude of silicification. Instead, silicification is due to the polymerization of silica-supersaturated hydrothermal fluids upon discharge at the surface of the hot spring. Microorganisms do, however, impart an influence on the fabric of the siliceous sinters that form around hot spring vents. Different microorganisms have different growth patterns, that in turn, affect the style of laminations, the primary porosity of the sinter and the distribution of later-stage diagenetic cementation.  相似文献   
7.
Pollutant nitrogen deposition effects on soil and foliar element concentrations were investigated in acidic and limestone grasslands, located in one of the most nitrogen and acid rain polluted regions of the UK, using plots treated for 8-10years with 35-140kg Nha(-2)y(-1) as NH(4)NO(3). Historic data suggests both grasslands have acidified over the past 50years. Nitrogen deposition treatments caused the grassland soils to lose 23-35% of their total available bases (Ca, Mg, K, and Na) and they became acidified by 0.2-0.4 pH units. Aluminium, iron and manganese were mobilised and taken up by limestone grassland forbs and were translocated down the acid grassland soil. Mineral nitrogen availability increased in both grasslands and many species showed foliar N enrichment. This study provides the first definitive evidence that nitrogen deposition depletes base cations from grassland soils. The resulting acidification, metal mobilisation and eutrophication are implicated in driving floristic changes.  相似文献   
8.
Arctic and subarctic ecosystems are experiencing substantial changes in hydrology, vegetation, permafrost conditions, and carbon cycling, in response to climatic change and other anthropogenic drivers, and these changes are likely to continue over this century. The total magnitude of these changes results from multiple interactions among these drivers. Field measurements can address the overall responses to different changing drivers, but are less capable of quantifying the interactions among them. Currently, a comprehensive assessment of the drivers of ecosystem changes, and the magnitude of their direct and indirect impacts on subarctic ecosystems, is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years, and is one of the most studied sites in the Arctic. In this study, we summarize and rank the drivers of ecosystem change in the Torneträsk area, and propose research priorities identified, by expert assessment, to improve predictions of ecosystem changes. The research priorities identified include understanding impacts on ecosystems brought on by altered frequency and intensity of winter warming events, evapotranspiration rates, rainfall, duration of snow cover and lake-ice, changed soil moisture, and droughts. This case study can help us understand the ongoing ecosystem changes occurring in the Torneträsk area, and contribute to improve predictions of future ecosystem changes at a larger scale. This understanding will provide the basis for the future mitigation and adaptation plans needed in a changing climate.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01381-1) contains supplementary material, which is available to authorized users.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号