首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   2篇
  国内免费   8篇
废物处理   24篇
环保管理   23篇
综合类   17篇
基础理论   47篇
污染及防治   69篇
评价与监测   27篇
社会与环境   8篇
灾害及防治   2篇
  2023年   5篇
  2022年   4篇
  2021年   14篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   8篇
  2013年   19篇
  2012年   11篇
  2011年   15篇
  2010年   8篇
  2009年   19篇
  2008年   17篇
  2007年   14篇
  2006年   8篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1977年   2篇
排序方式: 共有217条查询结果,搜索用时 532 毫秒
1.
Environmental Science and Pollution Research - Rivers engage in carbon cycle by transporting the dissolved products of weathering of rocks to the oceans, and this process is sensitive to the global...  相似文献   
2.
Environmental Science and Pollution Research - Behavior responses of organisms can be used as a non-invasive method for neurotoxicology studies since it directly links the nervous system’s...  相似文献   
3.
Residential, industrial, commercial, institutional and recreational activities discharge degradable and non-degradable wastes that reach the coastal water through rivers and cause coastal pollution. In the present study, mass transport of pollutants by Adyar and Cooum Rivers to the coastal water as a result of land-based discharges was estimated during low tide. The lowest and the highest flow recorded in Adyar varied from 514.59 to 2,585.08×106 litres/day. Similarly, the flow in Cooum River fluctuated between 266.45 and 709.34×106 litres/day. The present study revealed that the Adyar River transported 53.89–454.11 t/d of suspended solids, 0.06–19.64 t/d of ammonia, 15.95–123.24 t/d of nitrate and 0.4–17.86 t/d of phosphate, 0.004–0.09 kg/d of cadmium, 0.15–1.29 kg/d of lead and 3.03–17.58 kg/d of zinc to the coastal water owing to its high discharge. Similarly, the Cooum River transported 11.87–120.06 t/d of suspended solids, 0.08–58.7 t/d of ammonia, 6.11–29.25 t/d of nitrate and 0.66–10.73 t/d of phosphate, 0.003–0.021 kg/d of cadmium, 0.02–0.44 kg/d of lead and 1.36–3.87 kg/d of zinc. A higher concentration of suspended solids was noticed in post monsoon and summer months. An increase in the mass transport of ammonia, nitrate, phosphate in summer months (April and May) and an increase in the mass transport of cadmium, lead and zinc were observed in monsoon months (October–December) in both the rivers. Thus mass transport of pollutants study reveal that Cooum and Adyar Rivers in Chennai contribute to coastal pollution by transporting inorganic and trace metals significantly through land drainage.  相似文献   
4.
A D-trans-allethrin-based mosquito repellent coil formulation was used continuously in a room for 30 d. Two different experiments were conducted and the deposition of residues on different surfaces of the room was determined. Studies were conducted continuously for a period of 30 d in a fully closed room and in another room kept open for 14 h per day. The residues deposited on different surfaces, ceiling, side walls and floor, were measured. The results showed the accumulation of high concentrations of allethrin on all the surfaces of the room when the room was in a fully closed condition. Samples collected from the ceiling showed residues of D-trans-allethrin of 6.34-148.63 microg m(-2) during the 30 d study, the side walls 4.68-170.72 microg m(-2) and the floor 20.00-184.52 microg m(-2) Maximum residues were observed in 30 d samples collected from the ceiling and floor. The residual concentrations were nearly 10 times higher in samples collected from the closed room. Discontinuation of the use of the mosquito repellent after 30 d led to a gradual decrease in the concentrations of residues on all the surfaces. The influence of environmental parameters on the dissipation of residues was also studied.  相似文献   
5.
6.
7.
8.

The land disposal of waste and wastewater is a major source of N2O emission. This is due to the presence of high concentrations of nitrogen (N) and carbon in the waste. Abattoir wastewater contains 186 mg/L of N and 30.4 mg/L of P. The equivalent of 3 kg of abattoir wastewater-irrigated soil was sieved and taken in a 4-L plastic container. Abattoir wastewater was used for irrigating the plants at the rates of 50 and 100 % field capacity (FC). Four crop species were used with no crop serving as a control. Nitrous oxide emission was monitored using a closed chamber technique. The chamber was placed inside the plastic container, and N2O emission was measured for 7 days after the planting. A syringe and pre-evacuated vial were used for collecting the gas samples; a fresh and clean syringe was used each time to avoid cross-contamination. The collected gas samples were injected into a gas chromatography device immediately after each sampling to analyse the concentration of N2O from different treatments. The overall N2O emission was compared for all the crops under two different abattoir wastewater treatment rates (50 and 100 % FC). Under 100 % FC (wastewater irrigation), among the four species grown in the abattoir wastewater-irrigated soil, Medicago sativa (23 mg/pot), Sinapis alba (21 mg/pot), Zea mays (20 mg/pot) and Helianthus annuus (20 mg/pot) showed higher N2O emission compared to the 50 % treatments—M. sativa (17 mg/pot), S. alba (17 mg/pot), Z. mays (18 mg/pot) and H. annuus (18 mg/pot). Similarly, pots with plants have shown 15 % less emission than the pots without plants. Similar trends of N2O emission flux were observed between the irrigation period (4-week period) for 50 % FC and 100 % FC. Under the 100 % FC loading rate treatments, the highest N2O emission was in the following order: week 1 > week 4 > week 3 > week 2. On the other hand, under the 50 % FC loading rate treatments, the highest N2O emission was recorded in the first few weeks and in the following order: week 1 > week 2 > week 3 > week > 4. Since N2O is a greenhouse gas with high global warming potential, its emission from wastewater irrigation is likely to impact global climate change. Therefore, it is important to examine the effects of abattoir wastewater irrigation on soil for N2O emission potential.

  相似文献   
9.
The incorporation of nanoparticles in industrial and biomedical applications has increased significantly in recent years, yet their hazardous and toxic effects have not been studied extensively. While standard toxicological test methods are generally capable of detecting the toxic effects, the choice of relevant methods for nanomaterials is still discussed. Among the various oxide nanomaterials, silica nanoparticles are widely used in biological applications that include nano-medicine. But studies on adverse effects of silica nanoparticle exposure to fish remain unclear. Therefore, the present study was designed to investigate the oxidative toxic effects of silicon dioxide nanoparticles using fish model. The size of the SiO2 nanoparticles was between 68 and 100 nm which was confirmed by X-ray diffractometer, dynamic light scattering, scanning electron microscope and transmission electron microscope. The zebra fish were exposed to sub-lethal concentrations (5 and 2.5 mg/L) of characterized SiO2 nanoparticles for a period of 7 days. After 7 days, SiO2 nanoparticle-treated fishes were sacrificed, and tissues such as liver, muscle and gill were dissected out for the analysis of antioxidant enzymes and DNA fragmentation. The DNA profiles were analysed in the tissues of zebra fish that treated with SiO2 nanoparticles. Tissues of fish from clean water were used as control, and DNA profiles were analysed. It is found that DNA from control tissues was intact, whereas the tissues treated with SiO2 were all fragmented. SiO2 nanoparticle-mediated antioxidant enzymes activities, such as catalase, superoxide dismutase, glutathione (GSH)-S-transferase, glutathione reductase and GSH, in the tissues of zebra fish were measured. The results revealed that alteration of antioxidant enzymes due to SiO2 nanoparticle can be considered as a biomarker to SiO2-mediated oxidative stress in biological samples.  相似文献   
10.
Environmental Science and Pollution Research - Irrigated transplanted flooded rice is a major source of methane (CH4) emission. We carried out experiments for 2 years in irrigated flooded rice to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号