首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
废物处理   3篇
环保管理   1篇
综合类   1篇
基础理论   3篇
污染及防治   9篇
社会与环境   1篇
  2023年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  1993年   2篇
  1983年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
In this paper, the photosynthetic production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers is reported. The wild-type and highly active doubly mutated PHA synthase 1 (S325T/Q481K, abbreviated ST/QK) genes from Pseudomonas sp. 61-3 were introduced into Arabidopsis thaliana. Peroxisome targeting signal 1 (PTS1) was used to target PHA synthases into the peroxisome to synthesize PHA from the intermediates of the β-oxidation pathway. The transgenic Arabidopsis produced PHA copolymers consisting of 40–57 mol% 3-hydroxybutyrate, 21–49 mol% 3-hydroxyvalerate, 8–18 mol% 3-hydroxyhexanoate, and 2–8 mol% 3-hydroxyoctanoate. The maximum PHA contents were 220μ g/g cell dry weight (cdw) in leaves, and 36μ g/g cdw in stems, respectively. The expression of the ST/QK mutated PHA synthase in leaves gene did not lead to significant difference in PHA content and monomer composition of PHAs, compared to the wild-type PHA synthase gene, suggesting that the supply of monomers may be a rate-determining step of PHA biosynthesis in the peroxisome. However, in stems, there were significant differences dependent on whether the wild-type or ST/QK mutated PHA synthase was expressed. These results suggest that tissue-specific monomer availability is important in determining the final mol% composition of PHA copolymers produced by the peroxisome in plants.  相似文献   
2.

Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90–100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45–1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L−1; Cr 1.5 mg L−1; Fe, Pb, and Zn 3.0 mg L−1; Mn and Ni 1 mg L−1) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

  相似文献   
3.
The formation of mutagenic nitro-polycyclic aromatic hydrocarbons (NPAHs) 1- and 2-nitrotriphenylene (1- and 2-NTP) via gas-phase OH or NO3 radical-initiated reactions of triphenylene was demonstrated for the first time using a flow reaction system. In contrast with the results of conventional electrophilic nitration, 2-NTP was formed in larger yield than 1-NTP, but this is consistent with the mechanism proposed for gas-phase radical-initiated nitration of PAH. In diesel exhaust particle (DEP) samples, both 1- and 2-NTP were identified and their concentrations determined, as well as 1-nitropyrene (1-NP), which is a representative combustion-derived NPAH: the mean concentrations of 1-NTP, 2-NTP, and 1-NP were 4.7, 1.9, and 32 pmol mgDEP–1, respectively. The mean 2-NTP/1-NTP, 1-NTP/1-NP, and 2-NTP/1-NP ratios in samples of airborne particles collected in a residential area in Osaka, Japan, were>1.55,<0.25, and 0.37, respectively; these values are much higher than those of the DEP samples. This finding indicates that there is another source for airborne NTPs, especially 2-NTP, apart from diesel exhaust. These results strongly suggest that airborne NTPs originate from atmospheric processes such as radical-initiated reactions of triphenylene, and this has a significant influence on the atmospheric occurrence of NTPs.  相似文献   
4.
The association of the direct-acting mutagenicity of soluble organic fraction of airborne particles toward Salmonella typhimurium YG1024 strain with the direct emission was investigated at a roadside and at a residential area in Osaka, Japan. The direct-acting mutagenicity was evaluated as mutagenic activity per unit volume of ambient air (rev m−3) and/or that per airborne particulate weight collected on a filter (rev mg−1). The annual or diurnal changes of the mutagenicity of airborne particles at the residential site showed similar patterns to those of some gaseous pollutants such as NO2 and SO2, which were emitted from combustion processes. This result indicates that the mutagenicity is mainly attributable to the primary emissions. From the analysis of the relationship between the wind sector and the mutagenic intensity, rev m−3 and rev mg−1 values were strongly affected by the emissions from the fixed sources and from the mobile sources, respectively. The rev m−3 value and concentration of 1-nitropyrene (1-NP) in unit per m3 at the roadside were a factor of 2.6 and 2.8 higher than those at the residential site, respectively, but the rev mg−1 value and concentration of 1-NP in unit per mg at the roadside were substantially comparable to those at the residential area. These observations suggest that the characteristics of the airborne particles can be attributed to the automotive emissions even at the suburban area.  相似文献   
5.
Abstract

One of the thermal oxidation technologies recommended by the United Nations Environment Programme (UNEP) is destruction of chlorofluorocarbons (CFCs) in a cement kiln. The destruction of CFC12, CFC11 and CFC113 was studied in a cement kiln plant in actual commercial operation. CFCs were completely destroyed in the kiln under normal operating conditions. Hydrogen fluoride and hydrogen chloride generated by CFC decomposition were absorbed by cement materials. No formation of toxic ha-logenated organic compounds, such as polychlorinated dibenzo-p-dioxins or dibenzofurans (PCDDs/PCDFs), was observed in the CFC incineration.  相似文献   
6.
A block copolymer {P[(R,S)-HB-b-EG]} of atactic poly[(R,S)-3-hydroxybutyrate] {P[(R,S)-HB]} and poly(ethylene glycol) (PEG) was prepared by the ring-opening polymerization of -butyrolactone in the presence of a macroinitiator (PEG/ZnEt2/H2O) which had been produced by the reaction of ,-dihydroxy PEG ( n=3000) with ZnEt2/H2O (1/0.6) catalyst. The block copolymer ( n=10,500, w/ n=1.2) was an A-B-A triblock copolymer comprising atactic P[(R,S)-HB] (A) and PEG (B) segments. The miscibility, physical properties, and biodegradability of binary blends of microbial poly[(R)-3-hydroxybutyrate] {P[(R)-HB]} with the block copolymer P[(R,S)-HB-b-EG] has been studied. The glass-transition temperature (T g) data showed that the P[(R)-HB]/P[(R,S)-HB-b-EG] blend was miscible in the amorphous state. The P[(R)-HB] film became flexible and tough by means of blending with P[(R,S)-HB-b-EG] block copolymer. The enzymatic degradation of blend films was carried out at 37°C and pH 7.4 in a 0.1M phosphate solution of an extracellular PHB depolymerase fromAlcaligenes faecalis. The enzymatic degradation took place solely on the surface of the blend films.  相似文献   
7.
This report shows that cesium can be immobilized in soils with an efficiency of 96.4% by ball milling with nano-metallic Ca/PO4. In Japan, the major concern on 137Cs deposition and soil contamination due to the emission from the Fukushima Daiichi nuclear power plant showed up after a massive quake on March 11, 2011. The accident rated 7, the highest possible on the international nuclear event scale, released 160 petabecquerels (PBq) of iodine 131I and 15 PBq of 137Cs according to the Japanese Nuclear and Industrial Safety Agency. Both 137Cs and 131I radioactive nuclides are increasing cancer risk. Nonetheless, 137Cs, with a half-life of about 30 years compared with 8 days for 131I, is a major threat for agriculture and stock farming and, in turn, human life for decades. Therefore, in Japan, the 137Cs fixation and immobilization in contaminated soil is the most important problem, which should be solved by suitable technologies. Ball milling treatment is a promising treatment for the remediation of cesium-contaminated soil in dry conditions. Here, we studied the effect, factors and mechanisms of soil Cs immobilization by ball milling with the addition of nano-metallic Ca/CaO/NaH2PO4, termed “nano-metallic Ca/PO4.” We used scanning electron microscopy combined with electron dispersive spectroscopy (SEM/EDS) and X-ray diffraction. Results show that immobilization efficiency increases from 56.4% in the absence of treatment to 89.9, 91.5, and 97.7 when the soil is ball-milled for 30, 60 and 120 min, respectively. The addition of nano-metallic Ca/PO4 increased the immobilization efficiency to about 96.4% and decreased the ball milling time. SEM/EDS analysis allows us to observe that the amount of Cs decreased on soil particle surface. Use of nano-metallic Ca/PO4 over a short milling time also decreases Cs leaching. Therefore, ball milling with nano-metallic Ca/PO4 treatment may be potentially applicable for the remediation of radioactive Cs-contaminated soil in dry conditions.  相似文献   
8.
This report shows that soil heavy metals can be totally immobilized by grinding with nano-Fe/Ca/CaO. Remediation of soils contaminated by heavy metals is a critical issue in Japan. Indeed, contaminated soils are notoriously difficult to remediate using available technologies. Major setbacks in typical immobilization techniques for heavy metals are wet conditions, forming secondary effluents and further treatment for effluents. Solidification with nano-Fe/Ca/CaO dispersion mixture is a promising treatment for the total immobilization of soil heavy metals As, Cd, Cr, Pb, and separation in dry conditions. Here, we studied the heavy metal immobilization by simple grinding with the addition of three mixtures: nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/PO4. Samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES) and scanning electron microscopy combined with electron dispersive spectroscopy (SEM–EDS). Results show that the addition of nano-Fe/Ca/CaO immobilized 95–99 % of heavy metals, versus 65–80 % by simple grinding. After treatment, 36–45 wt% of magnetic and 64–55 wt% of nonmagnetic fractions of soil were separated. Their condensed heavy metal concentration was 85–95 % and 10–20 %, respectively. Nano-Fe/Ca/CaO treatment reduced the concentration of leachates heavy metals to values lower than the Japan soil elution standard regulatory threshold of 0.01 mg/l for As, Cd, and Pb; and 0.05 mg/l for Cr. This technology can therefore immobilize totally soil heavy metals and reduce heavy metal by separation.  相似文献   
9.
This article reports the first identification of paraben-chlorinated derivatives in river water. Parabens are widely used as preservatives in pharmaceuticals and personal care products. Parabens can be easily chlorinated by chlorinated tap water. The resulting chlorinated derivatives might pose a higher potential risk to humans and ecosystems than the corresponding parent parabens. However, the occurrence of such derivatives in rivers remains unknown so far. We studied 23 parabens and their chlorinated derivatives from rivers receiving effluents from sewage treatment plants in Shizuoka city, in the central Pacific region of Japan. The compounds were extracted by solid-phase extraction with a styrene polymer sorbent, trimethylsilyl-derivatized, and then identified by gas chromatography–mass spectrometry. Six chlorinated parabens and their primary degradation products, two chlorinated hydroxybenzoic acids, were found for the first time in river water. Moreover, in river water, chlorinated derivatives preferentially partition into the suspended-solid phase.  相似文献   
10.
This study investigated the use of a nanometallic Ca and CaO dispersion mixture for the immobilization of heavy metals (As, Cd, Cr and Pb) in contaminated soil. Simple grinding achieved 85-90% heavy metal immobilization, but it can be enhanced further to 98-100% by addition of a nanometallic Ca/CaO dispersion mixture produced by grinding. Observations using SEM-EDS elemental maps and semi-quantitative analysis showed that the amounts of As, Cd, Cr, and Pb measurable on the soil particle surface decrease after nanometallic Ca/CaO treatment. The leachable heavy metal concentrations were reduced after nanometallic Ca/CaO treatment to concentrations lower than the Japan soil elution standard regulatory threshold: <0.01 mg L−1 for As, Cd, and Pb; and 0.05 mg L−1 for Cr. Effects of soil moisture and pH on heavy metal immobilization were not strongly influenced. The most probable mechanisms for the enhancement of heavy metal immobilization capacity with nanometallic Ca/CaO treatment might be due to adsorption and entrapment of heavy metals into newly formed aggregates, thereby prompting aggregation of soil particles and enclosure/binding with Ca/CaO-associated immobile salts. Results suggest that the nanometallic Ca/CaO mixture is suitable for use in immobilization of heavy-metal-contaminated soil under normal moisture conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号