首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
废物处理   4篇
综合类   3篇
基础理论   1篇
污染及防治   7篇
评价与监测   2篇
社会与环境   2篇
  2022年   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2010年   1篇
  2008年   2篇
  2005年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Intrauterine fetal demise (IUFD) in one of twins at 12 weeks of gestation was accompanied by markedly elevated maternal serum alpha-fetoprotein (AFP) at 17 and 18 weeks. Amniotic fluid AFP from the healthy surviving twin's sac at 18·5 and 23 weeks was also greatly increased along with a positive acetylcholinesterase (AChE) band. Persistently elevated AFP and positive AChE so long after fetal demise–-6·5 and 11 weeks post IUFD–-has not, to our knowledge, been previously described. In similar cases, high level ultrasound and careful placental examination at birth should be utilized to search for fetal abnormalities or multiple pregnancy with IUFD.  相似文献   
2.
The present study was carried out to isolate bacteria capable of producing biosurfactant that solublize endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro- 6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and for enhanced degradation of endosulfan and its major metabolite endosulfate. The significance of the study is to enhance the bioavailability of soil-bound endosulfan residues as its degradation is limited due to its low solubility. A mixed bacterial culture capable of degrading endosulfan was enriched from pesticide-contaminated soil and was able to degrade about 80% of α-endosulfan and 75% of β-endosulfan in five days. Bacterial isolates were screened for biosurfactant production and endosulfan degradation. Among the isolates screened, four strains produced biosurfactant on endosulfan. ES-47 showed better emulsification of endosulfan and degraded 99% of endosulfan and 94% of endosulfate formed during endosulfan degradation. The strain reduced the surface tension up to 37 dynes/cm. The study reveals that the strain was capable of degrading endosulfan and endosulfate with simultaneous biosurfactant production.  相似文献   
3.
Hydroponic experiments were performed with Talinum triangulare (Jacq.) Willd. focusing the root cellular biochemistry with special emphasis on DNA damage, structural, and elemental analyses in Pb(NO3)2 exposed with 0, 0.25, 0.5, 0.75, 1.0, and 1.25 mM for 7 days. Lead (Pb) increased reactive oxygen species production, lipid peroxidation, protein oxidation, cell death, and DNA damage and decreased the protein content in a dose-dependent manner. Likewise, a dose-dependent induction of antioxidative enzymes superoxide dismutase and catalase by Pb was evident. Ascorbate peroxidase on the other hand responded biphasically to Pb treatments by showing induction at low (0.25 and 0.50) and repression at high (0.75–1.25 mM) concentrations. The estimation of proline content also indicated a similar biphasic trend. Scanning electron microscope and energy-dispersive X-ray spectroscopy analysis showed that 1.25 mM Pb treatment resulted in ultrastructural modifications in roots and stem tissue that was marked by the change in the elemental profile. The findings pointed to the role of oxidative stress in the underlying Pb phytotoxicity and genotoxicity in T. triangulare.  相似文献   
4.
Numerical simulations of stretched laminar twin premixed flames are carried out in order to understand the gasphase formation of dioxins in situations analogous to the post combustor and following regions of a typical incinerator. A previously developed chemical kinetic mechanism, that describes dioxin formation in terms of some generic species, is used in the calculations. The results indicate a temperature region favorable to the gasphase production of dioxins that lies between 1100 and 1500 K, as well as a weak dependence of dioxin formation on the oxygen concentration in the flames. The effect of oxygen is better described by observing the consumption of some of the generic species. Though no measurements of dioxin concentration in idealized flows, such as those simulated, are available, the results are in qualitative accord with total measurements of dioxin concentration (due to both gas- and solid-phase processes) obtained by other investigators. The numerical predictions identify some flames that are ignited, in which dioxin consumption takes place, and others which are unignited, in which significant dioxin production occurs as the result of largely isothermal mixing. The calculations indicate that unignited flames containing no initial fuel favor dioxin formation significantly over those that contain some initial quantity of fuel. Finally, some implications regarding incinerator practice are discussed.  相似文献   
5.
Microbes play a central role in the decomposition and remineralization of organic matter and recycling of nutrients in aquatic environments. In this study, we examined the influence of physical, chemical, and biological parameters on the rate of bacterial production (BP) and viral production (VP) with respect to primary production over a diurnal period in Cochin estuary. Time series measurements were made every 2 h for 12 h (6 a.m.–6 p.m.) during periods of low and high salinities. The light intensity as photosynthetically active radiation, temperature, salinity, nutrients like NO3–N, SiO4–Si, and PO4–P, and chlorophyll a (Chl a) were measured along with BP, VP, and net primary production (NPP). NPP showed a strong positive correlation with light and Chl a (r 2?=?0.56 and 0.47, respectively), while VP showed a strong positive correlation with light, salinity, and Chl a (r 2?=?0.37, 0.58, and 0.37, respectively) and a negative correlation with BP (r 2?=??0.39) at P?≤?0.05. We observed a diurnal pattern in BP but did not have any significant correlation with light. Similar diurnal pattern was seen in VP, the peak of which was in succession with BP, suggesting that virus-mediated lysis plays an important role in loss processes of bacteria in Cochin estuary. The results of our study highlight the light-dependent and physicochemical-dependent diurnal variation in virioplankton production in a tropical estuarine ecosystem.  相似文献   
6.
The ever-increasing attention to the environmental impact of leather industry has necessitated the development of enzyme-based processes as potent alternatives to pollution causing chemicals. In this study, a hair saving process is developed for dehairing of skins and hides using a bacterial alkaline protease preparation, completely eliminating the use of lime and sulfide. To evaluate the efficacy of the enzymatic process, comparative studies have been carried out with two controls; a conventional lime-sulfide process and enzyme-assisted process using commercial dehairing enzyme with reduced quantities of lime and sulfide. The developed process requires a shorter duration of 6h for complete dehairing of skins and hides than control groups and also, it avoids the use of silicate carriers since the enzymatic dehairing is carried out by dip method. Histological and scanning electron microscopic analyses of the dehaired pelts obtained from enzymatic process reveal complete removal of hair and epidermis with moderate opening up of fiber structure in both dermis and corium. Moreover, the collagen is not damaged and resulting in a leather of good quality. The developed process has resulted in a remarkable reduction of effluent load in terms of biochemical oxygen demand, chemical oxygen demand, total dissolved solids and total suspended solids. Physicochemical studies conclusively show that the leathers produced by enzymatic process are equivalent to or better than that obtained by control systems. Thus, the developed enzymatic process offers immense potential for greener mode of dehairing of skins and hides in leather industry coupled with environmental excellence.  相似文献   
7.
This research paper provides a brief discussion about the relevance of third generation biodiesel co-products diversification. This diversification can be performed through the utilization of residual microalgal biomass (RMB) after oil extraction process. The present work analyses the use of RMB as potential filler for biocomposite production by means of understanding the chemical composition, the thermal stability as well as the protein content of RMB. Thermogravimetric analysis revealed the processing window of the RMB for biocomposite production and its dependence on its purity, especially on residual fat content. Biocomposites of RMB and poly(butylene succinate) (PBS) were prepared by melting processing technique using extrusion followed by injection-molding. Tensile, flexural and impact properties of the processed samples were evaluated. Scanning electron microscopy of fractured sections of the biocomposites was also used to examine the dispersion of RMB in PBS matrix. Finally, this study shows a competitive alternative to produce PBS-RMB biocomposites by replacing PBS by RMB in the range between 20 and 30 %. However, further studies are necessary to improve the compatibility of RMB with PBS to obtain competitive mechanical properties, compared to neat materials through, for instance, block co-polymers.  相似文献   
8.
Micromachining of glass is essential for several microfluidic components, micro-pumps, micro-accelerometers, micro-reactors, micro-fuel cells and several biomedical devices. Unique properties such as high chemical resistance, thermal stability and transparency give glass scope for additional applications. However, poor machinability of glass is a major constraint, especially in high aspect ratio applications of glass in microsystem technology. Micro electrochemical discharge machining (micro ECDM) is an emerging nontraditional fabrication method capable of micromachining ceramic materials like glass. While surface features less than 100 μm have been successfully machined on glass, machining high aspect features is a challenge. Machining accuracy at high depths is severely affected due to overcut and tool wear. In this paper, high aspect ratio microtools fabricated in-house have been used for deep microhole drilling on glass using low electrolyte concentration. An aspect ratio of 11 has been achieved. The results show that lower electrolyte concentration reduced overcut by 22%, thus increasing the aspect ratio of the micro holes. Lowering the electrolyte concentration also reduced the tool wear and hole taper by 39% and 18% respectively.  相似文献   
9.
Three crop fields namely paddy sugarcane and tomato exposed to bavistin [Methyl (1H-benzimidazol-2-yl) carbomate], monocrotophos[Dimethyl(E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] and kinado plus [(EZ)-2-chloro-3-dimethoxyphosphinoyloxy-X1, X1-diethylbut-2-enamide], respectively were chosen for the present investigation to know the bacterial population and degradation of pesticides. The chemical nature of the soil and water samples from the pesticide contaminated fields was analysed along with counting of the total heterotrophic bacteria (THB), Staphylococci and Enterococcci population. Mean calcium, phosphate and biological oxygen demand were maximum in tomato field water Field water recorded maximum phophate and silicate content, whereas, sugarcane field water elicited maximum dissolved oxygen content. On the other hand, available phosphate and exchangeable potassium were maximum is sugarcane field soil. Significant variations in the bacterial population were evident between the treatments in sugarcane field soil and tomato field water exposed to monocrotophos and kinado plus, respectively In addition, significant variations between THB, Staphlyococci and Enterococci population were also evinced in both the sugarcane andtomato fields. The dominant pesticide resistant bacteria, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeuroginosa harboured plasmids and the resistant trait observed were found to be plasmid borne.  相似文献   
10.
Dairy manure is an unavoidable natural, but negative, byproduct of milk production. Its nitrogen, phosphate, and potash contents represent a potential substitute for commercial fertilizers on field crops. In the absence of subsidies, manure transportation and land application costs limit its utilization as a substitute for chemical fertilizer. The results from a study of the economics of manure use in Central Texas suggest that, at the current costs for loading, hauling, and spreading, dairy manure cannot be economically transported from surplus to deficit areas within the study area. The estimated breakeven transport distance for manure application to four crops varied from 28 to 41 km; however, the distances between manure-surplus and manure-deficit counties in the study region varied from 40 to 90 km. An analysis of potential subsidies paid by the government or dairy farmers showed that the breakeven distance could increase by up to 30 km. A decrease in the assumed moisture content of the manure from 50% to 40% is shown to increase the breakeven distance by 10 km. The study suggests that dairy manure loading, transportation, and land application, with appropriate subsidies or reductions in moisture content, has the potential to be profitably substituted for chemical fertilizers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号