首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
环保管理   8篇
基础理论   1篇
环境理论   1篇
污染及防治   2篇
社会与环境   2篇
  2018年   2篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  1971年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
ABSTRACT: High springtime river flows came earlier by one to two weeks in large parts of northern New England during the 20th Century. In this study it was hypothesized that late spring/early summer recessional flows and late summer/early fall low flows could also be occurring earlier. This could result in a longer period of low flow recession and a decrease in the magnitude of low flows. To test this hypothesis, variations over time in the magnitude and timing of low flows were analyzed. To help understand the relation between low flows and climatic variables in New England, low flows were correlated with air temperatures and precipitation. Analysis of data from 23 rural, unregulated rivers across New England indicated little evidence of consistent changes in the timing or magnitude of late summer/early fall low flows during the 20th Century. The interannual variability in the timing and magnitude of the low flows in northern New England was explained much more by the interannual variability in precipitation than by the interannual variability of air temperatures. The highest correlation between the magnitude of the low flows and air temperatures was with May through November temperatures (r =?0.37, p= 0.0017), while the highest correlation with precipitation was with July through August precipitation (r = 0.67, p > 0.0001).  相似文献   
2.
Traditional ecological knowledge (TEK) and the information and insights it offers to natural resource research and management have been given much attention in recent years. On the practical question of how TEK is accessed and used together with scientific knowledge, most work to date has examined documentation and methods of recording and disseminating information. Relatively little has been done regarding exchanges between scientific and traditional knowledge. This paper examines three workshop settings in which such exchanges were intended outcomes. The Barrow Symposium on Sea Ice, the Exxon Valdez Oil Spill Restoration Program Synthesis/Information Workshops, and the Alaska Beluga Whale Committee illuminate certain features of the preparation, format, and context of workshops or series of workshops and their eventual outcomes and influence. The examples show the importance of long-term relationships among participants and thorough preparation before the actual workshop. Further research should look more systematically at the factors that influence the success of a given workshop and the various ways in which participants perceive success.  相似文献   
3.
Remotely sensed vegetation indices correspond to canopy vigor and cover and have been successfully used to estimate groundwater evapotranspiration (ETg) over large spatial and temporal scales. However, these data do not provide information on depth to groundwater (dtgw) necessary for groundwater models (GWM) to calculate ETg. An iterative approach is provided that calibrates GWM to ETg derived from Landsat estimates of the Enhanced Vegetation Index (EVI). The approach is applied to different vegetation groups in Mason Valley, Nevada over an 11‐year time span. An uncertainty analysis is done to estimate the resulting mean and 90% confidence intervals in ETg to dtgw relationships to quantify errors associated with plant physiologic complexity, species variability, and parameter smoothing to the 100 m GWM‐grid, temporal variability in soil moisture and nonuniqueness in the solution. Additionally, a first‐order second moment analysis shows ETg to dtgw relationships are almost exclusively sensitive to estimated land surface, or maximum, ETg despite relatively large uncertainty in extinction depths and hydraulic conductivity. The EVI method of estimating ETg appears to bias ETg during years with exceptionally wet spring/summer conditions. Excluding these years improves model performance significantly but highlights the need to develop a methodology that accounts not only on quantity but timing of annual precipitation on phreatophyte greenness.  相似文献   
4.
We investigated the relative roles of natural factors and shoreline harvest leading to recent declines of the black leather chiton (Katharina tunicata) on the outer Kenai Peninsula, Alaska (U.S.A.). This intertidal mollusk is a strongly interacting grazer and a culturally important subsistence fishery for Sugpiaq (Chugach Alutiiq) natives. We took multiple approaches to determine causes of decline. Field surveys examined the significant predictors of Katharina density and biomass across 11 sites varying in harvest pressure, and an integrated analysis of archaeological faunal remains, historical records, traditional ecological knowledge, and contemporary subsistence invertebrate landings examined changes in subsistence practices through time. Strong evidence suggests that current spatial variation in Katharina density and biomass is driven by both human exploitation and sea otter (Enhydra lutris) predation. Traditional knowledge, calibrated by subsistence harvest data, further revealed that several benthic marine invertebrates (sea urchin, crab, clams, and cockles) have declined serially beginning in the 1960s, with reduced densities and sizes of Katharina being the most recent. The timing of these declines was coincident with changes in human behavior (from semi-nomadic to increasingly permanent settlement patterns, improved extractive technologies, regional commercial crustacean exploitation, the erosion of culturally based season and size restrictions) and with the reestablishment of sea otters. We propose that a spatial concentration in shoreline collection pressure through time, increased harvest efficiency, and the serial depletion of alternative marine invertebrate prey have led to intensified per capita predator impacts on Katharina and thus its recent localized decline.  相似文献   
5.
The Arctic environment, including sea ice, is changing. The impacts of these changes to Inuit and I?upiat ways of life vary from place to place, yet there are common themes as well. The study reported here involved an exchange of hunters, Elders, and others from Barrow, Alaska, USA, and Clyde River, Nunavut, Canada, as members of a larger research team that also included visiting scientists. Although the physical environments of Barrow and Clyde River are strikingly different, the uses of the marine environment by residents, including sea ice, had many common elements. In both locations, too, extensive changes have been observed in recent years, forcing local residents to respond in a variety of ways. Although generally in agreement or complementary to one another, scientific and indigenous knowledge of sea ice often reflect different perspectives and emphases. Making generalizations about impacts and responses is challenging and should therefore be approached with caution. Technology provides some potential assistance in adapting to changing sea ice, but by itself, it is insufficient and can sometimes have undesirable consequences. Reliable knowledge that can be applied under changing conditions is essential. Collaborative research and firsthand experience are critical to generating such new knowledge.  相似文献   
6.
The current and projected future physical impacts of climate change are most extreme in the northern latitudes. The indigenous peoples in the North American arctic and sub-arctic rely on the availability of natural resources in mixed subsistence economies for nutritional and cultural survival and thus experience disproportionate burdens with respect to our changing climate. Arctic climate impacts exemplify how global phenomena and activities can significantly affect people locally in remote regions. These impacts are largely consistent throughout the region, irrespective of national boarders; however, indigenous peoples in Canada are better positioned than those in the United States to shape policy in a way that would ensure their adaptation to climate change. Political and industrial activity on national and global scales can have significant environmental, social and cultural repercussions on the local scale in remote areas. Remedies for environmental injustice will thus require strong cross-scale political and institutional linkages.  相似文献   
7.
Agricultural irrigation accounts for a large fraction of the total water use in the western United States. The Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) remote sensing energy balance model is being used to estimate historical agricultural water use in western Nevada to evaluate basin‐wide water budgets. Each METRIC evapotranspiration (ET) estimate must be calibrated by a trained user, which requires some iterative time investment and results in variation in ET estimates between users. An automated calibration algorithm for the METRIC model was designed to generate ET estimates comparable to those from trained users by mimicking the manual calibration process. Automated calibration allows for rapid generation of METRIC ET estimates with minimal manual intervention, as well as uncertainty and sensitivity analysis of the model. The variation in ET estimates generated by the automated calibration algorithm was found to be similar to the variation in manual ET estimates. Results indicate that uncertainty was highest for fields with low ET levels and lowest for fields with high ET levels, with a seasonal mean uncertainty of approximately 5% for all fields. In addition, in a blind comparison, automated daily and seasonal ET estimates compared well with flux tower measurement ET data at multiple sites. Automated methods can generate first‐order ET estimates that are similar to time intensive manual efforts with less time investment.  相似文献   
8.
Escalating concerns about water supplies in the Great Basin have prompted numerous water budget studies focused on groundwater recharge and discharge. For many hydrographic areas (HAs) in the Great Basin, most of the recharge is discharged by bare soil evaporation and evapotranspiration (ET) from phreatophyte vegetation. Estimating recharge from precipitation in a given HA is difficult and often has significant uncertainty, therefore it is often quantified by estimating the natural discharge. As such, remote sensing applications for spatially distributing flux tower estimates of ET and groundwater ET (ETg) across phreatophyte areas are becoming more common. We build on previous studies and develop a transferable empirical relationship with uncertainty bounds between flux tower estimates of ET and a remotely sensed vegetation index, Enhanced Vegetation Index (EVI). Energy balance‐corrected ET measured from 40 flux tower site‐year combinations in the Great Basin was statistically correlated with EVI derived from Landsat imagery (r2 = 0.97). Application of the relationship to estimate mean‐annual ETg from four HAs in western and eastern Nevada is highlighted and results are compared with previous estimates. Uncertainty bounds about the estimated mean ETg allow investigators to evaluate if independent groundwater discharge estimates are “believable” and will ultimately assist local, state, and federal agencies to evaluate expert witness reports of ETg, along with providing new first‐order estimates of ETg.  相似文献   
9.

The relationship between stability and change in social-ecological systems has received considerable attention in recent years, including the expectation that significant environmental changes will drive observable consequences for individuals, communities, and populations. Migration, as one example of response to adverse economic or environmental changes, has been observed in many places, including parts of the Far North. In Arctic Alaska, a relative lack of demographic or migratory response to rapid environmental and other changes has been observed. To understand why Arctic Alaska appears different, we draw on the literature on environmentally driven migration, focusing on three mechanisms that could account for the lack of response: attachment, the desire to remain in place, or the inability to relocate successfully; alternatives, ways to achieve similar outcomes through different means; and buffering, the reliance on subsidies or use of reserves to delay impacts. Each explanation has different implications for research and policy, indicating a need to further explore the relative contribution that each makes to a given situation in order to develop more effective responses locally and regionally. Given that the Arctic is on the front lines of climate change, these explanations are likely relevant to the ways changes play out in other parts of the world. Our review also underscores the importance of further attention to the details of social dynamics in climate change impacts and responses.

  相似文献   
10.
ABSTRACT .The problem analyzed in this paper is how to allocate optimally the available surface water in a river system among those who compete for its use, while acknowledging explicitly that for coastal states the ecology of bays and estuaries must be numbered among the competitors. The objective is to maximize the benefit resulting from water use while satisfying a set of constraints on flow. Benefit is assumed to be a function of the amount of water used and the time period in which the water is used. A mathematical model of this problem is shown to fit the format of the minimum cost circulation network flow problem. The Out-of-Kilter algorithm of D. R. Fulkerson is proposed as a solution technique. Sensitivity analysis on the input data is described as a means of determining the minimum economic benefit required to justify the allocation of a given volume of water needed to sustain the ecology of an estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号