首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   2篇
环保管理   4篇
综合类   2篇
基础理论   5篇
污染及防治   12篇
评价与监测   3篇
社会与环境   4篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
排序方式: 共有30条查询结果,搜索用时 9 毫秒
1.
Monitoring of Phenol in Wastewater Bioremediation by HPLC   总被引:1,自引:0,他引:1  
Bioremediation emphasizes the detoxification and destruction of toxic substances by microorganisms. Wastewater obtained from an industrial concern was solvent extracted with methyl alcohol and dichloromethane and analysed by GC/MS. Besides phenol, a large variety of organic compounds were detected. Under controlled laboratory conditions, the wastewater was innoculated with a mixed culture of microorganisms specially selected for their abilities to degrade phenol. Samples were collected at regular intervals from the stirred tank bioreactor and analysed for phenol by reverse phase HPLC with a C18 column. Results shows that from an initial phenol concentration of 987 ppm, slightly more than 50% was destroyed within 163 hours. The dry weight of the microorganisms and the plate count (CFU/ml) shows a steady increase from 0.5238 gms to 0.5355 gms and from 1.1E+9 to 1.94E+13 respectively over the same period. This suggested that the phenol was consumed by the microorganisms as the sole carbon source.  相似文献   
2.

Background, aim, and scope  

Alum (aluminum sulfate) is the currently preferred chemical amendment for phosphorus (P) treatment in poultry litter (PL). Aluminum-based drinking-water treatment residuals (Al-WTRs) are the waste by-product of the drinking-water treatment process and have been effectively used to remove P from aqueous solutions, but their effectiveness in PL water extracts has not been studied in detail. Elevated cost associated with alum could be minimized by using the equally effective WTRs to remove soluble P from PL, and they can be obtained at a minimal cost from drinking-water treatment plants.  相似文献   
3.

Background, aim, and scope  

Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance. Earlier batch experiments in our laboratory suggested the presence of organometallic (Cu) complexes during relevant roxarsone degradation experiments. We hypothesized that organocopper compounds were complexed to roxarsone, mediating its degradation in field-collected swine wastewater samples from storage lagoons. The objective of this study was to investigate the role of organometallic (Cu) complexes during roxarsone degradation under aerobic conditions in swine wastewater suspensions, using electrospray ionization mass spectrometry (ES-MS).  相似文献   
4.
The efficiency of vetiver grass (Vetiveria zizanioides) in removing 2,4,6-trinitrotoluene (TNT) from aqueous media was explored in the presence of a common agrochemical, urea, used as a chaotropic agent. Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), thus, enhancing plant TNT uptake. The primary objectives of this study were to: (i) characterize TNT absorption by vetiver in hydroponic media, and (ii) determine the effect of urea on chemically catalyzing TNT uptake by vetiver grass in hydroponic media. Results showed that vetiver exhibited a high TNT uptake capacity (1.026 mgg(-1)), but kinetics were slow. Uptake was considerably enhanced in the presence of urea, which significantly (p<0.001) increased the 2nd-order reaction rate constant over that of the untreated (no urea) control. Three major TNT metabolites were detected in the roots, but not in the shoot, namely 1,3,5-trinitrobenzene, 4-amino 2,6-dinitrotoluene, and 2-amino 4,6-dinitrotoluene, indicating TNT degradation by vetiver grass.  相似文献   
5.
Food surveys for levels of toxic chemicals frequently report the levels on an uncooked basis. It is known that cooking may in some conditions decrease the amount of dioxins and related chemicals in food. Surveys of polybrominated diphenyl ether (PBDE) levels in food to date show data from uncooked food only. In this article, it was shown that broiling, with fat dripped from the foods reported here, ground beef, ground lamb, catfish, trout, and salmon, reduces the amount of PBDEs in these foods. This suggests that calculations of food intake need to take into consideration levels in the cooked food rather than in the uncooked food.  相似文献   
6.
7.
Olive mill waste water (OMWW) originating from a two-phase olive oil-producing plant was treated with a crude peroxidase extract prepared from onion solid by-products. The treatments were based on a 3 × 3 factorial design, employing a series of combinations of pH and H2O2, in order to identify optimal operational conditions. The treatment performance was assessed by estimating the removal percentage of total polyphenols. The model established produced a satisfactory fitting of the data (R 2 = 0.94, p = 0.0158), while the second-order polynomial equation used to describe the process indicated that peroxidase-catalysed polyphenol removal in diluted OMWW is facilitated at relatively low pH and intermediate H2O2 values. A predicted value of 50.7 ± 9.5% removal was calculated under optimal operational conditions (pH 2.76, [H2O2] = 3.56 mM). Analysis of an untreated and an optimally treated sample by high performance liquid chromatography revealed that enzyme treatment brought about alteration in the original OMWW polyphenolic profile. The use of peroxidase from onion solid by-products is proposed as an alternative means that could have a prospect in bioremediation applications.  相似文献   
8.
Fate of arsenic in swine waste from concentrated animal feeding operations   总被引:2,自引:0,他引:2  
Swine diets are often supplemented by organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to treat animal diseases and promote growth. Recent work reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in lagoons nearby concentrated animal feeding operations (CAFOs). The objectives of this study were to: (i) characterize a suite of swine wastes collected from 19 randomly selected CAFOs for soluble arsenate [As(V)], arsenite [As(III)], dimethylarsenic acid (DMA), monomethylarsonic acid (MMA), 3-amino-4-hydroxyphenylarsonic acid (3-HPPA), p-arsanilic acid, and roxarsone, and (ii) determine the geochemical fate of roxarsone in storage lagoons nearby CAFOs. Swine waste suspensions were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions to monitor roxarsone degradation kinetics. Arsenic speciation analysis using liquid chromatography and inductively coupled plasma mass spectrometry (LC-ICPMS) illustrated the prevalence of As(V) in swine waste suspensions. Roxarsone underwent degradation to either organoarsenicals (3-HPPA) or As(V) and a number of unidentified metabolites. Roxarsone degradation occurred under anaerobic conditions for suspensions low in solids content, but suspensions higher in solids content facilitated roxarsone degradation under both anaerobic and aerobic conditions. Increased solids content enhanced roxarsone degradation kinetics under aerobic conditions. According to current waste storage and sampling practices, arsenic in swine wastes stored in lagoons has been overlooked as a possible environmental health issue.  相似文献   
9.
2,4,6-Trinitrotoluene (TNT) is a potent mutagen, and a Group C human carcinogen that has been widely used to produce munitions and explosives. Vast areas that have been previously used as ranges, munition burning, and open detonation sites are heavily contaminated with TNT. Conventional remediation activities in such sites are expensive and damaging to the ecosystem. Phytoremediation offers a cost-effective, environment-friendly solution, utilizing plants to extract TNT from contaminated soil. We investigated the potential use of vetiver grass (Vetiveria zizanioides) to effectively remove TNT from contaminated solutions. Vetiver grass plants were grown in hydroponic systems containing 40 mg TNTL(-1) for 8d. Aqueous concentrations of TNT reached the method detection limit ( approximately 1 microg L(-1)) within the 8-d period, demonstrating high affinity of vetiver for TNT, without any visible toxic effects. Results from this preliminary hydroponic study are encouraging, but in need of verification using TNT-contaminated soils.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号