首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
安全科学   2篇
环保管理   3篇
综合类   1篇
基础理论   8篇
污染及防治   2篇
社会与环境   1篇
  2023年   1篇
  2022年   2篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  1998年   2篇
  1993年   1篇
  1989年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.  相似文献   
3.
Climate change is altering nutrient cycling within the Arctic Ocean, having knock-on effects to Arctic ecosystems. Primary production in the Arctic is principally nitrogen-limited, particularly in the western Pacific-dominated regions where denitrification exacerbates nitrogen loss. The nutrient status of the eastern Eurasian Arctic remains under debate. In the Barents Sea, primary production has increased by 88% since 1998. To support this rapid increase in productivity, either the standing stock of nutrients has been depleted, or the external nutrient supply has increased. Atlantic water inflow, enhanced mixing, benthic nitrogen cycling, and land–ocean interaction have the potential to alter the nutrient supply through addition, dilution or removal. Here we use new datasets from the Changing Arctic Ocean program alongside historical datasets to assess how nitrate and phosphate concentrations may be changing in response to these processes. We highlight how nutrient dynamics may continue to change, why this is important for regional and international policy-making and suggest relevant research priorities for the future.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01673-0.  相似文献   
4.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
5.
Two vegetative clones (designated 11/85 and 7/86 in accordance with month/year of collection) of the chlorophyte macroalga Ulva rotundata were collected in the vicinity of Beaufort, North Carolina, USA. Each was grown in an outdoor continuous-flow system in summer (>-20°C) of 1986 and late winter (10° to 17°C) of 1987 in graded scalar quantum irradiances ranging from 9 to 100% of full sunlight, with and without NH 4 + enrichment. The pigment content of plants from each irradiance was determined following 4 to 8 d sunny weather. Chlorophyll (chl) and carotenoid content were inverse curvilinear functions of irradiance. The chl a:b and carotenoid: chl ratios were positively related to irradiance. The close nonlinear relationship between chl (a+b) and the chl a:b ratio was independent of clone, temperature or NH 4 + -enrichment. Chl (a+b) content was linearly correlated with light-regulated growth rate in the summer, but showed a marked hysteresis in the relationship in winter due to photoinhibition. The photon growth yield (PGY, i.e., the biomass yield per unit absorbed light) was maximal for plants grown at slightly subsaturating irradiances, and dropped off sharply at lower irradiances. At higher irradiances, PGY declined gradually in summer and markedly in winter. Light absorption exceeded growth needs at full sunlight, suggesting that U. rotundata was incapable of further reducing its pigment content when growth rate was light-saturated. This, along with the linear chlgrowth relationship, is consistent with photosynthetic feedback regulation of chl content. Regardless of the mechanism, chl regulation may operate within the constraints of a resource tradeoff between light harvesting and carboxylation capacities, such that pigmentation must be optimized rather than maximized.  相似文献   
6.
Two vegetative clones (designated 11/85 and 7/86 in accordance with month/year of collection) of the green macroalga Ulva rotundata were collected in the vicinity of Beaufort, North Carolina, USA. Each was grown in an outdoor continuous-flow system in summer (20°C) of 1986 and late winter (10° to 17°C) of 1987, in irradiances ranging from 9 to 100% of full sunlight, with and without NH 4 + enrichment. Continuous enrichment of influent estuarine water (dissolved inorganic nitrogen 2 M, N:P5) to 8–12 M NH 4 + had only a slight effect on growth rate. Temperature changes of 2 to 3°C had a much greater effect. Prolonged exposure to a given daily irradiance resulted in acclimation, exposure to a given daily irradiance resulted in acclimation, indicated by faster growth of conditioned plants relative to those transferred from a different irradiance. Most of the difference in growth rates between transferred and control plants was attributed to differences in thallus absorptance. Growth was photoinhibited above 40% sunlight at temperatures below 15°C, but not above 20°C. Following interday irradiance transfers, thallus percent dry weight changed in a manner that suggests different response times for photosynthesis and cell division.  相似文献   
7.
Research on commitment, procedural fairness, and organizational citizenship behavior (OCB) suggests that employees maintain distinct beliefs about, and direct behaviors towards, multiple targets in the workplace (e.g., the organization as a whole, their supervisor, and fellow workgroup members). The present studies were designed to test for “target similarity effects,” in which the relationships between commitment, procedural fairness, and OCB were expected to be stronger when they referred to the same target than when they referred to different targets. As predicted, we found that: (1) the positive relationship between commitment and OCB, and (2) the mediating effect of commitment on the positive relationship between procedural fairness and OCB, was particularly likely to emerge when the constructs were in reference to the same target. Support for these target similarity effects was found among layoff survivors (Study 1) and student project teams (Study 2). Theoretical and practical implications are discussed, as are limitations of the studies and suggestions for future research. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
8.
ABSTRACT: The decline of water quality in United States’ lotic ecosystems (streams and rivers) has been linked to nonpoint source nutrient loading (U.S. EPA, 1990). Determining limiting nutrients in streams is difficult due to the variable nature of lotic ecosystems. We developed a quantitative passive diffusion periphyton nutrient enrichment system, called the Matlock Periphytometer, to measure the response of attached algae (periphyton) to nutrient enrichment. The system is simple to build and provides quantitative nutrient enrichment of a surface for periphytic growth. The periphyton grow on a glass fiber filter, which allows complete recovery of periphyton for chlorophyll a analysis. A 14-kilodalton dialysis membrane was used as a biofilter to prevent bacterial and algal contamination of the nutrient solution. We determined the rates of diffusion of nitrogen and phosphorus ions across the Matlock Periphytometer's dialysis membrane and glass fiber filter over a 21-day period (42 and 22 μg/cm2/hr, respectively). We used the Matlock Periphytometer to determine the limiting nutrient in a woodland stream. Six replicates each of a control, nitrogen, and phosphorus treatment were placed in the stream for 14 days. The results indicated that phosphorus was the limiting nutrient in the stream for the period and location sampled.  相似文献   
9.
Desert fishes are some of the most imperiled vertebrates worldwide due to their low economic worth and because they compete with humans for water. An ecological complex of fishes, 2 suckers (Catostomus latipinnis, Catostomus discobolus) and a chub (Gila robusta) (collectively managed as the so‐called three species) are endemic to the U.S. Colorado River Basin, are affected by multiple stressors, and have allegedly declined dramatically. We built a series of occupancy models to determine relationships between trends in occupancy, local extinction, and local colonization rates, identify potential limiting factors, and evaluate the suitability of managing the 3 species collectively. For a historical period (1889–2011), top performing models (AICc) included a positive time trend in local extinction probability and a negative trend in local colonization probability. As flood frequency decreased post‐development local extinction probability increased. By the end of the time series, 47% (95% CI 34‐61) and 15% (95% CI 6‐33) of sites remained occupied by the suckers and the chub, respectively, and models with the 2 species of sucker as one group and the chub as the other performed best. For a contemporary period (2001?2011), top performing (based on AICc) models included peak annual discharge. As peak discharge increased, local extinction probability decreased and local colonization probability increased. For the contemporary period, results of models that split all 3 species into separate groups were similar to results of models that combined the 2 suckers but not the chub. Collectively, these results confirmed that declines in these fishes were strongly associated with water development and that relative to their historic distribution all 3 species have declined dramatically. Further, the chub was distinct in that it declined the most dramatically and therefore may need to be managed separately. Our modeling approach may be useful in other situations in which targeted data are sparse and conservation status and best management approach for multiple species are uncertain.  相似文献   
10.
Invasive species can dramatically alter ecosystems, but eradication is difficult, and suppression is expensive once they are established. Uncertainties in the potential for expansion and impacts by an invader can lead to delayed and inadequate suppression, allowing for establishment. Metapopulation viability models can aid in planning strategies to improve responses to invaders and lessen invasive species’ impacts, which may be particularly important under climate change. We used a spatially explicit metapopulation viability model to explore suppression strategies for ecologically damaging invasive brown trout (Salmo trutta), established in the Colorado River and a tributary in Grand Canyon National Park. Our goals were to estimate the effectiveness of strategies targeting different life stages and subpopulations within a metapopulation; quantify the effectiveness of a rapid response to a new invasion relative to delaying action until establishment; and estimate whether future hydrology and temperature regimes related to climate change and reservoir management affect metapopulation viability and alter the optimal management response. Our models included scenarios targeting different life stages with spatially varying intensities of electrofishing, redd destruction, incentivized angler harvest, piscicides, and a weir. Quasi-extinction (QE) was obtainable only with metapopulation-wide suppression targeting multiple life stages. Brown trout population growth rates were most sensitive to changes in age 0 and large adult mortality. The duration of suppression needed to reach QE for a large established subpopulation was 12 years compared with 4 with a rapid response to a new invasion. Isolated subpopulations were vulnerable to suppression; however, connected tributary subpopulations enhanced metapopulation persistence by serving as climate refuges. Water shortages driving changes in reservoir storage and subsequent warming would cause brown trout declines, but metapopulation QE was achieved only through refocusing and increasing suppression. Our modeling approach improves understanding of invasive brown trout metapopulation dynamics, which could lead to more focused and effective invasive species suppression strategies and, ultimately, maintenance of populations of endemic fishes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号