首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
  国内免费   2篇
安全科学   1篇
废物处理   3篇
综合类   1篇
基础理论   2篇
污染及防治   4篇
评价与监测   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有12条查询结果,搜索用时 27 毫秒
1.
Environmental Science and Pollution Research - Methylmercury (MeHg) is a well-known environmental pollutant associated with neurological and developmental deficits in animals and humans. However,...  相似文献   
2.
目前关于原油对淡水水生脊椎动物内分泌信号的潜在影响的认知有限。本文以非洲爪蟾(爪蟾属,X. laevis)蝌蚪和莫桑比克罗非鱼幼鱼(口孵非鲫属,O. mossambicus)为研究对象,选择风化原油和未风化提炼后的原油这2种原油的水溶性组分(WAFs)进行暴露实验,选择出可作为内分泌信号改变的生物标志物的基因,对其表达进行了研究。此外,将X. laevis蝌蚪暴露于靠近地下石油库的地表水中,对上述基因表达做了定量分析。利用重组酵母对原油、原油水溶性组分和地表水的(抗)雌激素和(抗)雄激素性进行了评价。在X. laevis对2种原油WAFs的响应中,甲状腺激素受体β表达均显著下调,而另一种与甲状腺相关的基因,2型脱碘酶,在O. mossambicus暴露于高浓度的原油WAF时被上调。此外,这2种WAFs都改变了与脂肪生成相关的过氧化物酶体增殖物激活受体γ在X. laevis中的表达。原油和WAFs在体外表现出抗雌激素和抗雄性激素的活性。然而,O. mossambicus雄激素受体2作为唯一一个代表生殖系统的基因,受到WAF暴露的影响显著。在地表水样品中发现了雌激素、抗雌激素和抗雄激素的作用;但是,在暴露于地表水的X. laevis中没有观察到任何基因表达的明显变化。在所用的2种模式生物以及2种原油中,响应各不相同。尽管如此,这些数据提供了证据证明原油污染可能会因内分泌信号转变对淡水鱼和两栖动物的健康造成不利影响。
精选自Truter, J. C., van Wyk, J. H., Oberholster, P. J., Botha, A.-M. and Mokwena, L. M. (2017), An evaluation of the endocrine disruptive potential of crude oil water accommodated fractions and crude oil contaminated surface water to freshwater organisms using in vitroand in vivo approaches. Environmental Toxicology and Chemistry, 36: 1330–1342. doi: 10.1002/etc.3665
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3665/full
  相似文献   
3.
Vapor intrusion characterization efforts can be challenging due to complexities associated with background indoor air constituents, preferential subsurface migration pathways, and response time and representativeness limitations associated with conventional low‐frequency monitoring methods. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as the need for rapid response to exposure exceedances becomes critical in order to minimize health risks and associated liabilities. Continuous monitoring platforms have been deployed to monitor indoor and subsurface concentrations of key volatile constituents, atmospheric pressure, and pressure differential conditions that can result in advective transport. These systems can be comprised of multiplexed laboratory‐grade analytical components integrated with telemetry and geographical information systems for automatically generating time‐stamped renderings of observations and time‐weighted averages through a cloud‐based data management platform. Integrated automatic alerting and responses can also be engaged within one minute of risk exceedance detection. The objectives at a site selected for testing included continuous monitoring of vapor concentrations and related surface and subsurface physical parameters to understand exposure risks over space and time and to evaluate potential mechanisms controlling risk dynamics which could then be used to design a long‐term risk reduction strategy. High‐frequency data collection, processing, and automated visualization efforts have resulted in greater understanding of natural processes such as dynamic contaminant vapor intrusion risk conditions potentially influenced by localized barometric pumping induced by temperature changes. For the selected site, temporal correlation was observed between dynamic indoor TCE vapor concentration, barometric pressure, and pressure differential. This correlation was observed with a predictable daily frequency even for very slight diurnal changes in barometric pressure and associated pressure differentials measured between subslab and indoor regimes and suggests that advective vapor transport and intrusion can result in elevated indoor TCE concentrations well above risk levels even with low‐to‐modest pressure differentials. This indicates that vapor intrusion can occur in response to diurnal pressure dynamics in coastal regions and suggests that similar natural phenomenon may control vapor intrusion dynamics in other regions, exhibiting similar pressure, geochemical, hydrogeologic, and climatic conditions. While dynamic indoor TCE concentrations have been observed in this coastal environment, questions remain regarding whether this hydrogeologic and climatic setting represent a special case, and how best to determine when continuous monitoring should be required to most appropriately minimize exposure durations as early as possible. ©2017 Wiley Periodicals, Inc.  相似文献   
4.
Stable carbon and nitrogen isotope analysis was used to examine the resources and position of macrobenthos in an estuarine seagrass food web in two sampling moments, during summer and winter. The contribution of each food source to the carbon requirements of consumers was estimated by a mixing model. The used carbon sources were largely seagrass associated, although seagrass tissues were utilized by only few species, and equally contributed to microphytobenthos and suspended particulate organic matter. Based on isotopic data, Lucinidae bivalves have an alternative trophic pathway via symbiosis with chemoautotrophic bacteria. Resource utilization inside and adjacent to seagrass beds did not differ significantly, implying that seagrass-associated inputs extend well beyond the borders of the vegetation patches.  相似文献   
5.
Vapor intrusion risk characterization efforts are challenging due to complexities associated with background indoor air constituents, preferential subsurface migration pathways, and representativeness limitations associated with traditional randomly timed time‐integrated sampling methods that do not sufficiently account for factors controlling concentration dynamics. The U.S. Environmental Protection Agency recommends basing risk related decisions on the reasonable maximum exposure (RME). However, with very few exceptions, practitioners have not been applying this criterion. The RME will most likely occur during upward advective flux conditions. As such, for RME determinations, it is important to sample when upward advective flux conditions are occurring. The most common vapor intrusion assessment efforts include randomly timed sample collection events, and therefore do not accurately yield RME estimates. More specifically, researchers have demonstrated that randomly timed sampling schemes can result in false negative determinations of potential risk corresponding to RMEs. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as there is a critical need for rapid response to exposure exceedances to minimize health risks and liabilities. To address these challenges, continuous monitoring platforms have been deployed to monitor indoor concentrations of key volatile constituents, atmospheric pressure, and pressure differential conditions that can result in upward toxic vapor transport and entry into overlying buildings. This article demonstrates how vapor intrusion RME‐based risks can be successfully and efficiently determined using continuous monitoring of concentration and parameters indicating upward advective chemical flux. Time series analyses from multiple selected 8‐ and 24‐hr time increments during upward advective TCE flux conditions were performed to simulate results expected from the most commonly employed sampling methods. These analyses indicate that, although most of the selected time increments overlap within the same 24‐hr window, results and conclusions vary. As such, these findings demonstrate that continuous monitoring of concentration and parameters such as differential pressure and determination of a time‐weighted concentration average over a selected duration when upward advective flux is occurring can allow for a realistic RME‐based risk estimate.  相似文献   
6.
7.
Human factors (HF) in creating and managing safety in complex systems is a continuous topic of research and discussion. In the aviation organisation under study here, an HF expert had started work in a newly created position one and a half years prior to the study. The aim of the study was to find out if HF was seen as a safety creating factor and what the conceptions of HF were in regard to the theoretical developments in the field. These topics were studied in order to determine the most effective means of implementing HF-work within the organisation. Two manager groups (upper and middle management) were targeted as subjects of the study due to their crucial role in developing working culture. Twenty-one managers were interviewed from nine units that represented three operational environments (radar units with heavy traffic, combined civil/military units and procedural air traffic control units, including airport operations. Managers were found to have disjointed and vague conceptions of HF and a lack of shared vision or strategy regarding HF. Some managers lacked an appropriate conception of HF. The present situation can prevent the organisation from utilizing HF competence in maintaining and developing the safety of services. Conceptions were most up-to-date at units, where outside pressures for change had forced managers to take HF issues into account in their operational environments. While the long-term implementation of HF faces considerable challenges, the article gives several proposals for organisational structures that support a more effective realization of HF.  相似文献   
8.
Vapor intrusion characterization efforts are challenging due to complexities associated with indoor background sources, preferential subsurface migration pathways, indoor and shallow subsurface concentration dynamics, and representativeness limitations associated with manual monitoring and characterization methods. For sites experiencing trichloroethylene (TCE) vapor intrusion, the potential for acute risks poses additional challenges, as the need for rapid response to acute toxicity threshold exceedances is critical in order to minimize health risks and associated liabilities. Currently accepted discrete time‐integrated vapor intrusion monitoring methods that employ passive diffusion–adsorption and canister samplers often do not result in sufficient temporal or spatial sampling resolution in dynamic settings, have a propensity to yield false negative and false positive results, and are not able to prevent receptors from acute exposure risks, as sample processing times exceed exposure durations of concern. Multiple lines of evidence have been advocated for in an attempt to reduce some of these uncertainties. However, implementation of multiple lines of evidence do not afford rapid response capabilities and typically rely on discrete time‐integrated sample collection methods prone to nonrepresentative results due to concentration dynamics. Recent technology innovations have resulted in the deployment of continuous monitoring platforms composed of multiplexed laboratory grade analytical components integrated with quality control features, telemetry, geographical information systems, and interpolation algorithms for automatically generating geospatial time stamped renderings and time‐weighted averages through a cloud‐based data management platform. Automated alerts and responses can be engaged within 1 minute of a threshold exceedance detection. Superior temporal and spatial resolution also results in optimized remediation design and mitigation system performance confirmation. While continuous monitoring has been acknowledged by the regulatory community as a viable option for providing superior results when addressing spatial and temporal dynamics, until very recently, these approaches have been considered impractical due to cost constraints and instrumentation limitations. Recent instrumentation advancements via automation and multiplexing allow for rapid and continuous assessment and response from multiple locations using a single instrument. These advancements have reduced costs to the point where they are now competitive with discrete time‐integrated methods. In order to gain more regulatory and industry support for these viable options, there is an immediate need to perform a realistic cost comparison between currently approved discrete time‐integrated methods and newly fielded continuous monitoring platforms. Regulatory support for continuous monitoring platforms will result in more effectively protecting the public, provide property owners with information sufficient to more accurately address potential liabilities, reduce unnecessary remediation costs for situations where risks are minimal, lead to more effective and surgical remediation strategies, and allow practitioners to most effectively evaluate remediation system performance. To address this need, a series of common monitoring scenarios and associated assumptions were derived and cost comparisons performed. Scenarios included variables such as number of monitoring locations, duration, costs to meet quality control requirements, and number of analyses performed within a given monitoring campaign. Results from this effort suggest that for relatively larger sites where five or more locations will be monitored (e.g., large buildings, multistructure industrial complexes, educational facilities, or shallow groundwater plumes with significant spatial footprints under residential neighborhoods), procurement of continuous monitoring services is often less expensive than implementation of discrete time‐integrated monitoring services. For instance, for a 1‐week monitoring campaign, costs‐per‐analysis for continuous monitoring ranges from approximately 1 to 3 percent of discrete time‐integrated method costs for the scenarios investigated. Over this same one‐week duration, for discrete time‐integrated options, the number of sample analyses equals the number of data collection points (which ranged from 5 to 30 for this effort). In contrast, the number of analyses per week for the continuous monitoring option equals 672, or four analyses per hour. This investigation also suggests that continuous automated monitoring can be cost‐effective for multiple one‐week campaigns on a quarterly or semi‐annual basis in lieu of discrete time‐integrated monitoring options. In addition to cost benefits, automated responses are embedded within the continuous monitoring service and, therefore, provide acute TCE risk‐preventative capabilities that are not possible using discrete time‐integrated passive sampling methods, as the discrete time‐integrated services include analytical efforts that require more time than the exposure duration of concern. ©2016 Wiley Periodicals, Inc.  相似文献   
9.
10.
Goal, Scope and Background  Complexing agents are one of the major environmental concerns in electrolytic and chemical surface treatment (ECST) industry; e.g. the EU reference document on the best available technology (BREF) pays special attention to the usage of EDTA. However, no comprehensive studies are available on usage of EDTA or other complexing agents or their load to the receiving waters from ECST industry. In this study, the concentrations of complexing agents were analyzed to get an overview of their usage and load and also to recognize their relevance in the environmental permitting and compliance monitoring of such facilities. Methods  Complexing agent concentrations of treated waste water samples of 23 ECST plants with vat volume exceeding 30 m3 was studied. HPLC and GC-MS were used to analyze and identify complexing agent concentrations, ICP-AES to analyze metals, and TOC to analyse the organic load. The number of the plants in this study equals around 50% of such installations in Finland subject to environmental permit as the IPPC directive provides. Results  EDTA, DTPA, and NTA were found in 11 samples out of 23 mainly in rather small concentrations. Their annual load to the receiving waters may be estimated to be 0.3 tons and the total load from Finnish ECST industry can be extrapolated to be up to 1 ton. Compared to the estimated use of 5–10 tons in the industry this finding is rather low, even though in Finland cast-off treatment baths are typically delivered to the hazardous waste treatment plants. Discussion  Since the load of complexing agents is rather low, the chemical waste water treatment seems to be either capable of reducing complexing agent concentrations to some extent or their usage is lower than expected. On the other hand, it is possible that not all complexing agents were identified from the samples. The metal concentrations and TOC were well hand in hand with concentrations found in the Finnish environmental database, which proves that the samples were of average quality of the waste water from the facilities. Conclusions  According to the results, complexing agents cannot be considered as an environmental risk in the ECST industry in Finland; EDTA concentrations are clearly below PNECaqua (2.2 mg/l) and the total discharge is very marginal compared to the discharge from the pulp and paper industry. However, DPTA seems to be as commonly used as EDTA, but also biodegradable NTA was found. Recommendations and Perspectives  Since EDTA has gained plenty of attention in the BREF, DTPA and other, poorly biodegradable complexing agents should also be taken into account when the BREF is updated within a few years. Also an EU risk assessment report especially for DTPA should be supplied, since its use is obviously increasing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号