首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  国内免费   1篇
安全科学   2篇
废物处理   3篇
环保管理   5篇
综合类   7篇
基础理论   9篇
污染及防治   7篇
评价与监测   2篇
社会与环境   1篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2002年   2篇
  1999年   1篇
  1995年   1篇
  1990年   1篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
排序方式: 共有36条查询结果,搜索用时 375 毫秒
1.
A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 105 to 18 × 10cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate that the water is highly contaminated with microorganisms and is hazardous for drinking purposes. Bacteriological pollution of drinking water supplies caused diarrhoeal illness in Bholakpur, which is due to the infiltration of contaminated water (sewage) through cross connection, leakage points, and back siphoning.  相似文献   
2.
Extracellular polymeric substances (EPS) are an extracellular matrix found in sludge which plays a crucial role in flocculation by interacting with the organic solids. Therefore, to enhance pretreatment of sludge, EPS have to be removed. In this study, EPS were removed with a chemical extractant, NaOH, to enhance the bacterial pretreatment. A lysozyme secreting bacterial consortium was isolated from the waste activated sludge (WAS). The result of density gradient gel electrophoresis (DGGE) analysis revealed that the isolated consortium consists of two strains. The two novel strains isolated were named as Jerish03 (NCBI accession number KC597266) and Jerish 04 (NCBI accession number KC597267) and they belong to the genus Bacillus. Pretreatment with these novel strains enhances the efficiency of the aerobic digestion of sludge. Sludge treated with the lysozyme secreting bacterial consortium produced 29 % and 28.5 % increase in suspended solids (SS) reduction and chemical oxygen demand (COD) removal compared to the raw activated sludge (without pretreatment) during aerobic digestion. It is specified that these two novel strains had a high potential to enhance WAS degradation efficiency in aerobic digestion.  相似文献   
3.
A batch adsorption process was applied to investigate the removal of perchlorate (ClO4 ?) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO4 ? removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO4 ?. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable.  相似文献   
4.
Nickel(II) reacts with N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone (ECCT) and forms a yellow colored complex, which was extracted into n-butanol from sodium acetate and acetic acid buffer at pH 6.0. The absorbance value of the Ni(II)-ECCT complex was measured at different intervals of time at 400nm, to ascertain the time stability of the complex. The extraction of the complex into the solvent was instantaneous and stable for more than 72h. The system obeyed Beer's law in the concentration range of 1.2-5.6mugml(-1) of nickel(II), with an excellent linearity and a correlation coefficient of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species were found to be 1.114x10(4)Lmol(-1)cm(-1) and 5.29x10(-3)mugcm(-2) at 400nm, respectively. Hence, a detailed study of the extraction of nickel(II) with ECCT has been undertaken with a view to developing a rapid and sensitive extractive spectrophotometric method for the determination of nickel(II) when present alone or in the presence of diverse ions which are usually associated with nickel(II) in environmental matrices like soil and industrial effluents. Various standard alloy samples (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are comparable with those from atomic absorption spectrometry and were found to be in good agreement.  相似文献   
5.
6.
Contrary to much boundary spanning research, we examined the negative consequences of boundary spanning contact in multi‐organizational contexts. Results from a sample of 833 Dutch peacekeepers show that employees' boundary spanning contact with members of other organizations was associated with reports of negative relationships with external parties (e.g., work‐specific problems, culture‐specific problems). These negative relationships also had a spillover effect such that they mediated the effect of boundary spanning contact on boundary spanners' negative attitudes toward their own jobs and organization (e.g., job attractiveness and confidence in the organization). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
利用厌氧颗粒污泥处理氯代有毒有机物   总被引:16,自引:0,他引:16  
用能进行还原脱氯的微生物富集物接种,在小型试验装置内成功地培养出了具有还原脱氯功能的颗粒污泥。五氯苯酚能被这种颗粒污染完全脱氯并进一步分解为甲烷和二氧化碳。四氯乙烯和其他氯代乙烯能被颗粒污还原脱氯为乙烯。这种脱氯的颗粒污泥可用来处理含有五氯苯酚和氯乙烯类的废水和地下水。  相似文献   
8.
The acute toxicity of unionized ammonia; nitrite and nitrate to the Indian major carp Catla catla (Hamilton) was determined using static and continuous flow through systems for 24 hours. The median lethal concentration (LC50) values for 24 h of ammonia (NH3-N), nitrite (NO2-N) and nitrate (NO3-N) were 0.045 mg/l, 120.84 mg/l and 1565.43 mg/l in static test respectively and were 0.036 mg/l, 117.43 mg/l and 1484.08 mg/l in continuous flow through test respectively.  相似文献   
9.
The current study improves streamflow forecast lead‐time by coupling climate information in a data‐driven modeling framework. The spatial–temporal correlation between streamflow and oceanic–atmospheric variability represented by sea surface temperature (SST), 500‐mbar geopotential height (Z500), 500‐mbar specific humidity (SH500), and 500‐mbar east–west wind (U500) of the Pacific and the Atlantic Ocean is obtained through singular value decomposition (SVD). SVD significant regions are weighted using a nonparametric method and utilized as input in a support vector machine (SVM) framework. The Upper Rio Grande River Basin (URGRB) is selected to test the applicability of the proposed model for the period of 1965–2014. The April–August streamflow volume is forecasted using previous year climate variability, creating a lagged relationship of 1–13 months. SVD results showed the streamflow variability was better explained by SST and U500 as compared to Z500 and SH500. The SVM model showed satisfactory forecasting ability with best results achieved using a one‐month lead to forecast the following four‐month period. Overall, the SVM results showed excellent predictive ability with average correlation coefficient of 0.89 and Nash–Sutcliffe efficiency of 0.79. This study contributes toward identifying new SVD significant regions and improving streamflow forecast lead‐time of the URGRB.  相似文献   
10.

Purpose and aim

In general, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of copper from water using magnesium alloy as anode and cathode.

Materials and methods

Magnesium alloy of size 2.0 dm2 was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. Copper adsorbed magnesium hydroxide coagulant was characterized by SEM, EDAX, XRD, and FTIR.

Results

The results showed that the optimum removal efficiency of copper is 97.8 and 97.2 % with an energy consumption of 0.634 and 0.996 kWh/m3 at a current density of 0.025 A/dm2, pH of 7.0 for AC and DC, respectively. The adsorption of copper is preferably fitting the Langmuir adsorption isotherm for both AC and DC respectively. The adsorption process follows the second-order kinetics model with good correlation. Temperature studies showed that adsorption was endothermic and spontaneous in nature.

Conclusions

The magnesium hydroxide generated in the cell removes the copper present in the water, reducing the copper concentration to less than 1 mg/L, making it safe for drinking. The results of the scale-up study show that the process was technologically feasible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号