首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
安全科学   8篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
核电厂应急柴油发电机组承载着事故工况下为安全停堆设施持续提供应急电源的安全功能,而主油罐是确保该功能正常运行的关键设施,其安全问题影响重大。为客观评价其危险指数,文章利用国际权威分析工具"道(DOW)化学火灾、爆炸危险指数评价法"对该主油罐进行实例评价,并针对性的提出安全改进措施如增加油罐阻隔防爆技术。结果表明,经过安全补偿后,主油罐的火灾爆炸危险指数为"最轻",总体降幅达到61%,其中增加油罐阻隔防爆技术后的危险指数比改进前降幅达到30%,效果显著,有效降低了工程火灾和爆炸风险。  相似文献   
2.
为探究不同材质金属丝自身磁性差异对抑制气体爆炸的影响,在密闭圆形管道中进行丙烷-空气爆炸实验,采取爆炸瞬态压力测试、产物组成色谱检测和数值模拟机理分析相结合的方法进行探究。结果表明:与填装非磁性铝丝组相比,铁磁性铁丝组爆炸压力峰值更低;产物中一氧化碳和二氧化碳含量减少,残余丙烷和生成烃类物质种类和含量均增多;模拟分析得到温度敏感性基元反应R96,R1,R334,R276,R396,R254促进温度升高,R104,R409,R19,R358抑制温度升高;铁磁性的铁丝可能由于自身的感应磁场效应使其抑制自由基反应较铝丝更为有效。研究方法将产物分析与数值模拟相结合,对分析爆炸特性和抑爆机理具有参考意义。  相似文献   
3.
在自主设计加工的长度1 m透明爆炸实验管道内,进行不同浓度苯蒸气的爆炸实验。通过高速摄像仪拍摄管道内苯蒸气爆炸的火焰传播情况,并进行对比分析。结果表明:低浓度苯蒸气的爆炸火焰前端形态经历了4个阶段的变化,依次是"半椭圆"状火焰,"漏斗"状火焰,"郁金香"状火焰和"斜面"状火焰;低浓度苯蒸气点火后发生剧烈爆炸反应,高浓度苯蒸气点火后发生相对温和燃烧反应;低浓度苯蒸气爆炸火焰存续时间较短,边缘有蓝色火焰,高浓度苯蒸气燃烧火焰存续时间长,火焰颜色为明亮的黄色,无蓝色火焰。  相似文献   
4.
为揭示自燃活性硫化亚铁(FeS)气相钝化的机理,使用自主搭建的FeS气相钝化试验装置对实验室合成的自燃活性FeS进行了气相钝化试验.借助拉曼光谱仪对钝化前后的样品进行了分析测试.结果表明:钝化剂氧体积分数大于1.25%时,钝化过程中会放出大量热,具有较高的火灾爆炸风险;钝化剂氧体积分数小于1.25%时,钝化过程中放出热量较少,较为安全.研究表明:在低氧浓度氛围下,钝化后表面的FeS与钝化剂(低浓度氧气)反应产生了自燃活性较低的铁的氧化物,隔离了空气,从而阻止内部自燃活性强的FeS接触空气发生氧化放热甚至自燃,达到了钝化的目的;在较高氧浓度氛围下的FeS钝化是高自燃活性硫化亚铁与充足的氧气完全反应生成不燃的氧化铁.  相似文献   
5.
城市燃气管道很容易因复杂的城市环境影响而发生失效泄漏,而多灾害因素共同作用下的城市燃气泄漏的灾害后果更加严重,灾害形势更为复杂。为揭示城市燃气管道泄漏后多因素耦合作用下的动态致灾过程及灾害特征,首先采用系统框图对城市燃气管道泄漏灾害系统的内部结构进行分析,并在此基础上构建多因素耦合致灾数学模型;然后基于系统动力学理论,分别以燃气火灾、爆炸及毒害气体灾害为子模块,建立灾害系统动力学模型,并以模型检验来验证其适用性;最后应用于实际案例分析,采用系统动力学专用仿真软件,分别讨论了不同耦合条件下的单灾害和多灾害的动态致灾过程。结果表明:灾害子系统内部耦合度及同质耦合度增加,会促进各种灾害的增长速度、加速灾害发展,但不改变灾害损失的程度;而子系统间的耦合度增加,不仅会加快灾害的发展速度,还会提高其损失的程度、增加灾害损失的严重度。这表明,为有效控制复杂环境下的城市燃气管道泄漏灾害,应该削弱系统内部的因素耦合,孤立子系统间的因素耦合。  相似文献   
6.
为准确评价高密度聚乙烯(HDPE)粉尘爆炸敏感性和开展有效的粉尘防爆工作,采用Godbert-Greenwald恒温炉标准实验装置研究了典型HDPE粉尘云最低着火温度的分布特性,着重探讨了粉尘云浓度对不同喷尘压力条件下HDPE粉尘云最低着火温度的影响规律。研究表明:测试条件下HDPE粉尘云最低着火温度的变化处于360~445 ℃范围,随粉尘云浓度的增加呈现先降低后升高的总体趋势,粉尘云浓度为1.111 kg/m3时出现拐点,且粉尘云最低着火温度随喷尘压力的增加而降低。  相似文献   
7.
为探究丙烷对甲烷爆炸的影响,通过试验研究不同体积分数丙烷对甲烷爆炸特性的影响特征,利用CHEMKIN-PRO软件模拟丙烷影响甲烷爆炸过程中自由基变化特征。结果表明,随着丙烷体积分数的增大,丙烷对甲烷爆炸呈现出先促进后抑制的作用。当丙烷体积分数为0.2%~0.6%时,促进甲烷爆炸;当丙烷体积分数为0.8%~1.0%时,抑制甲烷爆炸。在丙烷促进甲烷爆炸阶段,丙烷通过均裂反应生成·C2H5和·CH3,·CH3增大·H、·O、·OH的生成速率,导致爆炸强度增强;在丙烷抑制甲烷爆炸阶段,随着丙烷体积分数的持续增加,O2体积分数降低,·O生成速率降低,·H、·OH生成速率降低,导致爆炸强度减弱。  相似文献   
8.
为探究石化行业中硫铁化合物自燃的微观机理,基于密度泛函理论建立了(FeS)m(m=1~6)团簇模型,计算O2在(FeS)m(m=1~6)团簇上的吸附性质与反应过程。吸附性质计算表明,O2倾向于吸附在Fe原子周围,随着FeS团簇尺寸增大,吸附能先增大后减小,当m=3时吸附能最大。O2吸附前后,(FeS)m(m=1~6)团簇的能隙均逐渐减小,其中(FeS)3团簇在所有吸附结构中能隙最小,化学活性最好。反应路径计算表明,反应分不同阶段,反应初期有FeSO、SO等产物形成,随着反应进行会生成S2和FeO,反应后期产物S2会受热氧化生成SO2。各阶段反应在动力学和热力学上均是可行的。分析认为FeS的氧化过程是一个自发的多阶段放热反应,FeS的氧化释放大量的热,引发S2的氧化反应,两步反应形成协同效应,加剧体系的反应进程,使反应体系不断积聚热量直至发生自燃。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号