首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   3篇
  国内免费   4篇
安全科学   3篇
废物处理   8篇
环保管理   11篇
综合类   11篇
基础理论   27篇
污染及防治   56篇
评价与监测   25篇
社会与环境   16篇
  2023年   5篇
  2022年   9篇
  2021年   14篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   5篇
  2016年   8篇
  2015年   6篇
  2014年   11篇
  2013年   20篇
  2012年   13篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1969年   1篇
  1960年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有157条查询结果,搜索用时 78 毫秒
1.
Environmental Science and Pollution Research - The present study focuses on extract-mediated Ag nanoparticles (NPs), AgCl-NPs, and Ag/AgCl nanocomposites (NCs) as photocatalysts along with its...  相似文献   
2.
3.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   
4.
Massanjore reservoir (area ~67 km2) located 84 km downstream from the most distant upstream source capacitates 620,000,000 m3 of water, and regulated flow characters are highly responsible for dam downstream alteration of hydrological, sedimentological and geomorphological characteristics of Mayurakshi River. In dam after condition, monsoon water level (mean water level during monsoon months) and pre-monsoon water level (mean water level during pre-monsoon months, i.e., March–May) have attenuated about 0.56 and 0.32 m, respectively. Maximum duration of high flow period during monsoon has reduced up to 16.5 %; coefficient of variation of diurnal fluctuation of water level during monsoon has increased from 31 to 47 %. Suspended sediment load in Mayurakshi River is reduced to 34 % in dam after period as recorded at Narayanpur gauge station. Average suspended sediment load has decreased even after Tilpara barrage construction from 4.960 to 4.350 mg/L. Average suspended sediment load is 7.875 mg/L in the sites of dam upstream course, and this average is only 4.46 mg/L in different sites of dam downstream course. Volume of discharge has decreased up to 11.3 % during monsoon time in dam after condition. Such reduction in discharge volume in turn has reduced about 24.6 % bed load-carrying capacity. As a result, huge deposition within channel invigorated channel bed aggradations (average 73.6 cm up to Saspara, site 14 at Fig. 1) in dam after condition. Narrowing of active channel, coarsening of channel bed materials, lowering of lateral stability, accelerating rise of braiding index, mixed response of the channel adjustment of the tributaries to local scale positive or negative base level change due to river bed aggradations and degradation, etc. signify the morphological alteration of dam downstream course.
Fig. 1 Mayurakshi River basin indicating Massanjore Dam, Tilpara barrage and sample working sites
  相似文献   
5.
The Barind tract of West Bengal is an area of tropical sub-humid region composed of old alluvial soil. The area has high water demand due to growing population pressure and intensification in agricultural activity. These create huge stress on surface and ground water availability. Continuous withdrawal of ground water has become an alternative source of irrigation water which has also again made the condition critical. Ground water level has been lowered down drastically in many parts in this region. Under this circumstance, it is necessary to delineate potential ground water-bearing layers. Therefore, the present study attempts to identify potential ground water-bearing zones to manage ground water effectively. Instead of usually used parameters for ground water potentiality delineation here only some particular litholog parameters like breadth of water-bearing layer, depth of water-bearing layer, presence of clay layer above or below major water-bearing layer have been considered for delimiting the same. The result shows that out of total area, 60% area (405,382.2 ha) falls under very low to low potential ground water-bearing zone and only 8.19% area (55,634.97 ha) is potential. Considering this spatial pattern of ground water availability, harvesting structure and magnitude of water withdrawing should be designed.  相似文献   
6.
Brassinosteroids (BRs) are involved in the amelioration of various biotic and abiotic stresses. With an aim to explore the role of BRs under heavy metal stress, plants of Brassica juncea L. were grown in pots. The plants were subjected to various concentrations of Nickel metal (0.0, 0.2, 0.4 and 0.6 mM) and harvested on 60th day in order to observe the expression of these hormones. The isolated BRs from the leaves of Brassica plants characterized by GC-MS include 24-Epibrassinolide (24-EBL), Castasterone, Dolicholide and Typhasterole. The effect of isolated 24-EBL was studied on Ni metal uptake and antioxidative defense system in 60 d old plants of Brassica. It was observed that 24-EBL significantly increased the activities of stress ameliorating enzymes and lowered the metal uptake in plants. This is the first report in B. juncea L. plants showing the expression of BRs under metal treatments and effect of the isolated 24-EBL on metal uptake and in oxidative stress management.  相似文献   
7.
Environmental Science and Pollution Research - Crustacean shell waste disposal is considered as biggest problem in seafood processing centers. Incineration and landfilling are the commonest ways of...  相似文献   
8.
Environmental Science and Pollution Research - Type 2 diabetes (T2D) is one of the most widely spread metabolic disorder also called as “life style” disease. Due to the alarming number...  相似文献   
9.

Background

The photocatalytic degradation of pyrene under UV (125?W Hg-Arc, 10.4?mW/cm2) irradiation of TiO2 aqueous suspension has been found to be highly improved with the dissolved transition metal ions like Cu2+, Fe3+, Ag+, and Au3+, etc. As the reduction potential of these metals lies below the conduction band (CB) position (?0.1?eV) of TiO2, the photoexcited electron transfer occurs more readily and reduces electron?Chole recombination rate. Therefore, it has a beneficial influence on the photocatalytic ability of TiO2 because of rapid Fermi energy equilibrium between the CB of TiO2 and its surface adsorbed metal ions.

Results and discussion

The Fermi level is referred to as the electrochemical potential and plays an important role in the band theory of solids. When metal and semiconductor are in contact, electron migration from photoirradiated semiconductor to the deposited metal occurs at the interface until two Fermi levels equilibrate and enhanced the photocatalytic activity of semiconductor photocatalyst. Ni2+ having more negative reduction potential (?0.25?eV) than the CB of TiO2 imparts negligible co-catalytic activity to TiO2 photoreaction. It also revealed that loading of Au3+ ions displayed higher degradation rate of pyrene than Au photodeposition. Furthermore, when the amount of dissolved Fe+3 and Au3+ ions gradually increases from 0.1 to 2?wt.%, the pyrene photodecomposition rate also become faster.  相似文献   
10.
Indiscriminate adoption and use of cell phone technology has tremendously increased the levels of electromagnetic field radiations (EMFr) in the natural environment. It has raised the concerns among the scientists regarding the possible risks of EMFr to living organisms. However, not much has been done to assess the damage caused to plants that are continuously exposed to EMFr present in the environment. The present study investigated the biochemical mechanism of interference of 900 MHz cell phone EMFr with root formation in mung bean (Vigna radiata syn. Phaseolus aureus) hypocotyls, a model system to study rhizogenesis in plants. Cell phone EMFr enhanced the activities of proteases (by 1.52 to 2.33 times), polyphenol oxidases (by 1.5 to 4.3 times), and peroxidases (by 1.5 to 2.0 times) in mung bean hypocotyls over control. Further, EMFr enhanced malondialdehyde (an indicator of lipid peroxidation), hydrogen peroxide, and proline content, indicating a reactive oxygen species-mediated oxidative damage in hypocotyls. It was confirmed by the upregulation in the activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase, and glutathione reductase) suggesting their possible role in providing protection against EMFr-induced oxidative damage. The study concluded that cell phone radiations affect the process of rhizogenesis through biochemical alterations that manifest as oxidative damage resulting in root impairment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号