首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
废物处理   4篇
环保管理   13篇
综合类   3篇
基础理论   20篇
污染及防治   20篇
评价与监测   10篇
社会与环境   2篇
灾害及防治   1篇
  2023年   1篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
The distribution and impacts of different nitrogen pollutants are inextricably linked. To understand the problem fully, the interactions between the different pollutants need to be taken into account. This is particularly important when it comes to abatement techniques, since measures to reduce emissions of one nitrogen pollutant can often lead to an increase in another. This project represents a step towards greater understanding of these issues by linking together new and existing nitrogen flux models into a larger framework. The modelling framework has been constructed and some of the nitrogen flows between fields, farms and the atmosphere have been modelled for a UK study area for typical farm management scenarios.  相似文献   
2.
The restoration of river environments has been of growing importance to river management and planning in the UK. The extension of ecological restoration to floodplains as well as river channels is more complex, partly because of the range of stakeholders and the diversity of relevant management institutions. This paper draws on a qualitative survey of river managers in the UK to identify institutional factors relevant to the success or failure of floodplain restoration projects.  相似文献   
3.
Changing climate and growing water demand are increasing the need for robust streamflow forecasts. Historically, operational streamflow forecasts made by the Natural Resources Conservation Service have relied on precipitation and snow water equivalent observations from Snow Telemetry (SNOTEL) sites. We investigate whether also including SNOTEL soil moisture observations improve April‐July streamflow volume forecast accuracy at 0, 1, 2, and 3‐month lead times at 12 watersheds in Utah and California. We found statistically significant improvement in 0 and 3‐month lead time accuracy in 8 of 12 watersheds and 10 of 12 watersheds for 1 and 2‐month lead times. Surprisingly, these improvements were insensitive to soil moisture metrics derived from soil physical properties. Forecasts were made with volumetric water content (VWC) averaged from October 1 to the forecast date. By including VWC at the 0‐month lead time the forecasts explained 7.3% more variability and increased the streamflow volume accuracy by 8.4% on average compared to standard forecasts that already explained an average 77% of the variability. At 1 to 3‐month lead times, the inclusion of soil moisture explained 12.3‐26.3% more variability than the standard forecast on average. Our findings indicate including soil moisture observations increased statistical streamflow forecast accuracy and thus, could potentially improve water supply reliability in regions affected by changing snowpacks.  相似文献   
4.
Acid sulfate soils have been described as the “nastiest soils on earth” because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.  相似文献   
5.
This study reports on the potential for gastrointestinal (GI) mobilization and bioavailability of food-borne PCBs in humans. The development and validation of a GI simulator and operational protocols, developed in compliance with the requirements of German DIN 19738 risk assessment test procedure, are presented. Food, naturally contaminated with PCBs, was homogenized with simulated saliva fluid and shaken in the GI simulator with simulated gastric fluids (containing pepsin, mucine) for 2 h at 37°C. Afterwards, the simulated intestinal fluids (containing pepsin, mucine, trypsin, pancreatin, bile) were added and the mixture shaken for a further 6 h prior to centrifugation and filtration using Buchner funnels to separate the undigested GI residues from GI fluids. PCBs were recovered from GI residues and fluids by Soxhlet and liquid-liquid extraction respectively, cleaned up using silica-SFE, and analyzed by gas chromatography mass spectrometry detection (GC-MSD). Detailed studies with fish indicate variations in mobilization and bioavailability of Σ PCBs (28, 52, 101, 118, 153, 138 and 180). For example, the bioavailable fractions (fractions mobilized) in mackerel, salmon, crab and prawn were 0.77, 0.60, 0.54, and 0.72 respectively of the Σ PCBs initially present in these food samples. The bioavailable fraction was dependent on the physicochemical characteristics of the PCBs. In mackerel bioavailable fractions for individual PCB congeners ranged from 0.47–0.82, from 0.30–0.70 in salmon, 0.44–0.64 in crab and in prawn from 0.47–0.77. Future studies will focus on understanding better, the variability in bioavailable fractions to be expected for different foodstuffs, in addition to tissue culture techniques using human gut cell lines to investigate a simultaneous mobilization and absorption of food-borne PCBs.  相似文献   
6.
7.
The biodegradation of 16 United States Environmental Protection Agency (USEPA)-listed polycyclic aromatic hydrocarbons (PAHs) present in contaminated soil from a manufactured gas plant site was investigated using laboratory-scale in-vessel composting-bioremediation reactors over 8 weeks. The influence of temperature (T, 38, 55, and 70 degrees C) and soil/green waste ratio (S:GW, 0.6:1, 0.7:1, 0.8:1, and 0.9:1) was investigated. A comparative study using a temperature profile during in-vessel composting-bioremediation to meet current regulatory requirements was also investigated. Temperature and amendment ratio were found to be important operating parameters for PAH removal for in-vessel composting-bioremediation of aged coal tar-contaminated soil. After 8 weeks of continuous treatment, the highest removal of 16 USEPA PAHs was observed at T=38 degrees C and S:GW=0.8:1 (75.2%). Lower removal of 16 USEPA PAHs was observed for temperature profile treatment (60.8%). We recommend that when conventional composting processes using temperature profiles to meet regulatory requirements for pathogen control need to be used, these should start with a prolonged mesophilic stage (6 weeks in this investigation) followed by thermophilic, cooling, and maturation stages.  相似文献   
8.
The biodegradation of 16 polycyclic aromatic hydrocarbons (PAHs), listed as priority pollutants by the USEPA, present in a coal-tar-contaminated soil from a former manufactured gas plant site was investigated using laboratory-scale in-vessel composting reactors to determine the suitability of this approach as a bioremediation technology. Preliminary investigations were conducted over 16 weeks to determine the optimum soil composting temperature (38, 55 and 70 degrees C). Three tests were performed; firstly, soil was composted with green-waste, with a moisture content of 60%. Secondly, microbial activity was HgCl2-inhibited in the soil green-waste mixture with a moisture content of 60%, to evaluate abiotic losses, while in the third experiment only soil was incubated at the three different temperatures. PAHs and microbial populations were monitored. PAHs were lost from all treatments with 38 degrees C being the optimum temperature for both PAH removal and microbial activity. Calculated activation energy values (E(a)) for total PAHs suggested that the main loss mechanism in the soil-green waste reactors was biological, whereas in the soil reactors it was chemical. Total PAH losses in the soil-green waste composting mixtures were by pseudo-first order kinetics at 38 degrees C (k = 0.013 day(-1), R2 = 0.95), 55 degrees C (k = 0.010 day(-1), R2 = 0.76) and at 70 degrees C (k = 0.009 day(-1), R2 = 0.73).  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号