首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   4篇
基础理论   2篇
污染及防治   2篇
评价与监测   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1982年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Dairy farms comprise a complex landscape of groundwater pollution sources. The objective of our work is to develop a method to quantify nitrate leaching to shallow groundwater from different management units at dairy farms. Total nitrate loads are determined by the sequential calibration of a sub-regional scale and a farm-scale three-dimensional groundwater flow and transport model using observations at different spatial scales. These observations include local measurements of groundwater heads and nitrate concentrations in an extensive monitoring well network, providing data at a scale of a few meters and measurements of discharge rates and nitrate concentrations in a tile-drain network, providing data integrated across multiple farms. The various measurement scales are different from the spatial scales of the calibration parameters, which are the recharge and nitrogen leaching rates from individual management units. The calibration procedure offers a conceptual framework for using field measurements at different spatial scales to estimate recharge N concentrations at the management unit scale. It provides a map of spatially varying dairy farming impact on groundwater nitrogen. The method is applied to a dairy farm located in a relatively vulnerable hydrogeologic region in California. Potential sources within the dairy farm are divided into three categories, representing different manure management units: animal exercise yards and feeding areas (corrals), liquid manure holding ponds, and manure irrigated forage fields. Estimated average nitrogen leaching is 872 kg/ha/year, 807 kg/ha/year and 486 kg/ha/year for corrals, ponds and fields respectively. Results are applied to evaluate the accuracy of nitrogen mass balances often used by regulatory agencies to assess groundwater impacts. Calibrated leaching rates compare favorably to field and farm scale nitrogen mass balances. These data and interpretations provide a basis for developing improved management strategies.  相似文献   
2.
Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L(-1) in wells downgradient from wastewater ponds, 8 to 30 mg L(-1) in corral wells, 5 to 12 mg L(-1) in tile drains, and 4 to 15 mg L(-1) in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 microg L(-1), well in excess of the maximum contaminant level of 80 microg L(-1) established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation ( approximately 4 to approximately 8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered when managing ground water resources and in any efforts to mitigate contamination of ground water with carbon-based contaminants, such as pesticides and pharmaceuticals.  相似文献   
3.
Transport of Cryptosporidium parvum through macroporous soils is poorly understood yet critical for assessing the risk of groundwater contamination. We developed a conceptual model of the physics of flow and transport in packed, tilted, and vegetated soilboxes during and immediately after a simulated rainfall event and applied it to 54 experiments implemented with different soils, slopes, and rainfall rates. Using a parsimonious inverse modeling procedure, we show that a significant amount of subsurface outflow from the soilboxes is due to macropore flow. The effective hydraulic properties of the macropore space were obtained by calibration of a simple two-domain flow and transport model that accounts for coupled flow in the matrix and in the macropores of the soils. Using linear mixed-effects analysis, macropore hydraulic properties and oocyst attenuation were shown to be associated with soil bulk density and rainfall rate. Macropore flow was shown to be responsible for bromide and C. parvum transport through the soil into the underlying pore space observed during the 4-h experiments. We confirmed this finding by conducting a pair of saturated soil column studies under homogeneously repacked conditions with no macropores in which no C. parvum transport was observed in the effluent. The linear mixed-effects and logistic regression models developed from the soilbox experiments provide a basis for estimating macropore hydraulic properties and the risk of C. parvum transport through shallow soils from bulk density, precipitation, and total shallow subsurface flow rate. The risk assessment is consistent with the reported occurrence of oocysts in springs or groundwater from fractured or karstic rocks protected only by shallow overlying soils.  相似文献   
4.
Sorption of heavy metals in strongly weathered soils: an overview   总被引:5,自引:0,他引:5  
Current knowledge of sorption processes in tropical soils is reviewed. Landscapes throughout the tropics are dominated by oxisols which occupy extensive areas of potentially highly productive soils. These soils are dominated by low-activity sesquioxide minerals and clays that have variable charge surfaces. The limited information on tropical soils available suggests that the composition of the ambient soil solution can influence sorption through changes in particle surface-charge density. Thus the observed decrease in sorption in the presence of divalent index cations may be related to the effect of ionic charge on the double-layer thickness which is manifested through a change in surface-charge characteristics. However, much work needs to be done to differentiate the effect of cation charge on surface-charge density from the competitive effect between the index cation and heavy-metal ions for the sorption sites. The effects of inorganic and organic ligands on adsorption of Cd by variable charge surfaces are also reviewed.  相似文献   
5.
Sulfonamide antibiotics are a commonly used group of compounds in animal husbandry. They are excreted with manure, which is collected in a storage lagoon in certain types of confined animal feeding operations. Flood irrigation of forage fields with this liquid manure creates the potential risk of groundwater contamination in areas with shallow groundwater levels. We tested the hypothesis that-in addition to the soil characteristics-manure as cosolute and manure pH are two major parameters influencing sulfonamide transport in soils. Solute displacement experiments in repacked, saturated soil columns were performed with soil (loamy sand) and manure from a dairy farm in California. Breakthrough of nonreactive tracer and sulfadimethoxine, sulfamethazine, and sulfamethoxazole at different solution pH (5, 6.5, 8.5) with and without manure was modeled using Hydrus-1D to infer transport and reaction parameters. Tracer and sulfonamide breakthrough curves were well explained by a model concept based on physical nonequilibrium transport, equilibrium sorption, and first-order dissipation kinetics. Sorption of the antibiotics was low ( K? ≤ 0.7 L kg) and only weakly influenced by pH and manure. However, sulfonamide attenuation was significantly affected by both pH and manure. The mass recovery of sulfonamides decreased with decreasing pH, e.g., for sulfamethoxazole from 77 (pH 8.5) to 56% (pH 5). The sulfonamides were highly mobile under the studied conditions, but manure application increased their attenuation substantially. The observed attenuation was most likely caused by a combination of microbial transformation and irreversible sorption to the soil matrix.  相似文献   
6.
7.
This study investigated different sedimentation measurement techniques and examined patterns of short-term sedimentation in two 1-ha replicate created freshwater marshes in central Ohio, USA. Short-term (one-year) sediment accumulation above feldspar, clay, glitter, and sand artificial marker horizons was compared at different water depths and distances from wetland inflow. A sediment budget was also constructed from turbidity and suspended sediment data for comparison with marker horizons. Glitter and sand marker horizons were the most successful for measuring sediment accumulation (81-100% marker recovery), while clay markers were completely unsuccessful. The sedimentation rate for both wetlands averaged 4.9 cm yr(-1) (36 kg m(-2) yr(-1)), and ranged from 1.82 to 9.23 cm yr(-1) (12.4 to 69.7 kg m(-2) yr(-1)). Sedimentation rates in deep, open water areas were significantly higher than in shallow, vegetated areas for both wetlands (t test, p < 0.05). However, observed sedimentation patterns may be attributed more to preferential flow through open water areas than to water depth or presence of vegetation. Contrary to the expected spatial distribution, sedimentation was highly variable within the wetlands, suggesting that bioturbation and turbulence may cause significant resuspension or that high hydrologic loads may distribute sediments throughout the basins. A sediment budget estimated sediment retention of approximately 740 g m(-2) yr(-1) per wetland (43% removal rate), yet gross sediment accumulation was 36,000 g m(-2) yr(-1) measured by marker horizons. These results suggest that erosive forces may have influenced sedimentation, but also may indicate problems with the sediment budget calculation methodology.  相似文献   
8.
Shallow groundwater quality on dairy farms with irrigated forage crops   总被引:5,自引:0,他引:5  
California's dairies are the largest confined animal industry in the state. A major portion of these dairies, which have an average herd size of nearly 1000 animal units, are located in low-relief valleys and basins. Large amounts of liquid manure are generated and stored in these dairies. In the semi-arid climate, liquid manure is frequently applied via flood or furrow irrigation to forage crops that are grown almost year-round. Little is known about the impact of manure management practices on water quality of the extensive alluvial aquifers underlying these basins. The objective of this work is to assess nitrate and salt leaching to shallow groundwater in a relatively vulnerable hydrogeologic region and to quantify the impact from individual sources on dairies. The complex array of potential point and nonpoint sources was divided into three major source areas representing farm management units: (1) manure water lagoons (ponds); (2) feedlot or exercise yard, dry manure, and feed storage areas (corrals); and (3) manure irrigated forage fields (fields). An extensive shallow groundwater-monitoring network (44 wells) was installed in five representative dairy operations in the northeastern San Joaquin Valley, CA. Water quality (electrical conductivity, nitrate-nitrogen, total Kjehldahl nitrogen) was observed over a 4-year period. Nitrate-N, reduced nitrogen and electrical conductivity (EC, salinity) were subject to large spatial and temporal variability. The range of observed nitrate-N and salinity levels was similar on all five dairies. Average shallow groundwater nitrate-N concentrations within the dairies were 64 mg/l compared to 24 mg/l in shallow wells immediately upgradient of these dairies. Average EC levels were 1.9 mS/cm within the dairies and 0.8 mS/cm immediately upgradient. Within the dairies, nitrate-N levels did not significantly vary across dairy management units. However, EC levels were significantly higher in corral and pond areas (2.3 mS/cm) than in field areas (1.6 mS/cm) indicating leaching from those management units. Pond leaching was further inferred from the presence of reduced nitrogen in three of four wells located immediately downgradient of pond berms. The estimated minimum average annual groundwater nitrate-N and salt loading from manure-treated forage fields were 280 and 4300 kg/ha, respectively. Leaching rates for ponds are estimated to be on the order of 0.8 m/year, at least locally. Since manure-treated fields represent by far the largest land area of the dairy, proper nutrient management will be a key to protecting groundwater quality in dairy regions overlying alluvial aquifers.  相似文献   
9.
ABSTRACT

The main purpose of Green Supply Chain Management (GSCM) is to improve the quality of supply chain management strategies and environmental performance. As per current statistics, the chemical industry is growing fast in Bangladesh. In order to compete for global competition, GSCM is essential in this sector. This paper proposes a systematic approach of structural framework whose aim is to enhance the probability of constructive implementation of GSCM in the field chemical industry in Bangladesh. Therefore, this framework evaluates the appropriate interrelationship along with the drivers of GSCM in the chemical industry. In total, eight drivers were finalized from an associated literature review with the help of survey and by taking expert opinions via the Delphi methodology. In addition to MICMAC analysis, the driving and the dependence powers for all the drivers were determined. Moreover, the structural frameworks for the drivers were developed by means of total interpretive structural modeling (TISM) technique. As a result, the findings indicate that the most significant driver was supplier pressure and willingness and the most important barrier was high cost. Finally, the main objective of this research is expected to help industrial managers to evaluate and understand the critical areas where they should emphasize to implement GSCM in the chemical industry.  相似文献   
10.
Generic Escherichia coli was isolated from surface water and groundwater samples from two dairies in Northern California and tested for susceptibility to antibiotics. Surface samples were collected from flush water, lagoon water, and manure solids, and groundwater samples were collected from monitoring wells. Although E. coli was ubiquitous in surface samples with concentrations ranging from several hundred thousand to over a million colony-forming units per 100 mL of surface water or per gram of surface solids, groundwater under the influence of these high surface microbial loadings had substantially fewer bacteria (3- to 7-log10 reduction). Among 80 isolates of E. coli tested, 34 (42.5 %) were resistant to one or more antibiotics and 22 (27.5 %) were multi-antibiotic resistant (resistant to ≥3 antibiotics), with resistance to tetracycline, cefoxitin, amoxicillin/clavulanic acid, and ampicillin being the most common. E. coli isolates from the calf hutch area exhibited the highest levels of multi-antibiotic resistance, much higher than isolates in surface soil solids from heifer and cow pens, flush alleys, manure storage lagoons, and irrigated fields. Among E. coli isolates from four groundwater samples, only one sample exhibited resistance to ceftriaxone, chloramphenicol, and tetracycline, indicating the potential of groundwater contamination with antibiotic-resistant bacteria from dairy operations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号