首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   473篇
  免费   7篇
  国内免费   1篇
安全科学   9篇
废物处理   17篇
环保管理   54篇
综合类   245篇
基础理论   53篇
污染及防治   81篇
评价与监测   16篇
社会与环境   6篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2014年   7篇
  2013年   24篇
  2012年   10篇
  2011年   20篇
  2010年   14篇
  2009年   6篇
  2008年   18篇
  2007年   10篇
  2006年   15篇
  2005年   7篇
  2004年   6篇
  2003年   10篇
  2000年   8篇
  1999年   4篇
  1996年   4篇
  1995年   5篇
  1993年   6篇
  1992年   6篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1977年   6篇
  1965年   8篇
  1963年   4篇
  1962年   7篇
  1961年   5篇
  1960年   6篇
  1959年   7篇
  1958年   4篇
  1957年   12篇
  1956年   7篇
  1955年   8篇
  1954年   7篇
  1952年   5篇
  1941年   7篇
  1940年   8篇
  1939年   10篇
  1938年   4篇
  1937年   8篇
  1936年   5篇
  1935年   11篇
  1934年   7篇
  1931年   5篇
  1929年   4篇
  1928年   4篇
  1927年   4篇
  1926年   5篇
排序方式: 共有481条查询结果,搜索用时 21 毫秒
1.
Greenhouse gas emissions assessments for site cleanups typically quantify emissions associated with remediation and not those from contaminant biodegradation. Yet, at petroleum spill sites, these emissions can be significant, and some remedial actions can decrease this additional component of the environmental footprint. This article demonstrates an emissions assessment for a hypothetical site, using the following technologies as examples: excavation with disposal to a landfill, light nonaqueous‐phase liquid (LNAPL) recovery with and without recovered product recycling, passive bioventing, and monitored natural attenuation (MNA). While the emissions associated with remediation for LNAPL recovery are greater than the other considered alternatives, this technology is comparable to excavation when a credit associated with product recycling is counted. Passive bioventing, a green remedial alternative, has greater remedial emissions than MNA, but unlike MNA can decrease contaminant‐related emissions by converting subsurface methane to carbon dioxide. For the presented example, passive bioventing has the lowest total emissions of all technologies considered. This illustrates the value in estimating both remediation and contaminant respiration emissions for petroleum spill sites, so that the benefit of green remedial approaches can be quantified at the remedial alternatives selection stage rather than simply as best management practices. ©2015 Wiley Periodicals, Inc.  相似文献   
2.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   
3.
The pH of Salmonella pre-enrichment media can become acidic (pH 4.0–5.0) when feeds/ingredients are incubated for 24?h. Salmonella in feed that have been stressed by heat and desiccation exhibit different pH tolerances than non-stressed cultures. Acidic conditions can result in cell injury/death and affect biochemical pathways. In this study, eight serotypes of Salmonella were grown in sterile meat and bone meal that was subjected to desiccation and heat stress. Cultures of non-stressed and stressed isolates were subsequently exposed to acidic pH from 4.0 to 7.0 in 0.5?pH increments (3 replicates/pH increment) in citrate buffer. At 6 and 24?h, serial dilutions were plated in duplicate on XLT-4 (xylose lysine tergitol-4) agar. Four serotypes showed an impaired ability to decarboxylate lysine on XLT-4. This inability to decarboxylate lysine was dependent on isolate, stress status, and incubation time. When the isolates’ ability to decarboxylate lysine was examined using biochemical tests, cultures were found to be able to decarboxylate lysine with the exception of S. Infantis. This suggests that XLT-4 contains a biochemical stressor(s) which affects the rate of decarboxylation by these Salmonella. These results suggest that acidic conditions may influence the detection and confirmation of Salmonella in feed.  相似文献   
4.
5.
The measurement of hydrochloric acid (HCl) on a continuous basis in coal-fired plants is expected to become more important if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration. For this study, the operational performance of three methods/instruments, including tunable diode laser absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and Fourier transform infrared (FTIR) spectroscopy, were evaluated over a range of real-world operating environments. Evaluations were done over an HCl concentration range of 0–25 ppmv and temperatures of 25, 100, and 185 °C. The average differences with respect to temperature were 3.0% for the TDL for values over 2.0 ppmv and 6.9% of all concentrations, 3.3% for the CRDS, and 4.5% for the FTIR. Interference tests for H2O, SO2, and CO, CO2, and NO for a range of concentrations typical of flue gases from coal-fired power plants did not show any strong interferences. The possible exception was an interference from H2O with the FTIR. The instrument average precision over the entire range was 4.4% for the TDL with better precision seen for concentrations levels of 2.0 ppmv and above, 2.5% for the CRDS, and 3.5% for the FTIR. The minimum detection limits were all on the order of 0.25 ppmv, or less, utilizing the TDL values with a 5-m path. Zero drift was found to be 1.48% for the TDL, 0.88% for the CRDS, and 1.28% for the FTIR.

Implications: This study provides an evaluation of the operational performance of three methods/instruments, including TDL absorption spectroscopy (TDLAS), cavity ring down spectroscopy (CRDS), and FTIR spectroscopy, for the measurement of hydrochloric acid (HCl) over a range of real-world operating environments. The results showed good instrument accuracy as a function of temperature and no strong interferences for flue gases typical to coal-fired power plants. The results show that these instruments would be viable for the measurement of HCl in coal-fired plants if HCl standards become implemented as part of the Federal Mercury and Air Toxics Standards (MATS) standards that are under consideration.  相似文献   

6.
7.
In response to new coal combustion residuals (CCR) disposal regulations, many coal‐fired utilities have closed existing unlined surface impoundments (SIs) that were traditionally used for disposal of CCR. The two primary closure options are closure‐in‐place (CIP), which involves dewatering and capping, and closure‐by‐removal (CBR), which includes excavation, transportation, and disposal of the CCR into a lined landfill. This article provides a methodology and a case study of how green and sustainable remediation concepts, including accounting for the life cycle environmental footprints and the physical risks to workers and community members, can be incorporated into the closure decision‐making process. The environmental impacts, occupational risks, and traffic‐related fatalities and injuries to workers and community members were calculated and compared for closure alternatives at a hypothetical site. The results demonstrated that the adverse impacts of the CBR option were significantly greater than those of the CIP option with respect to the analyzed impact pathways.  相似文献   
8.
Population viability analysis (PVA) is a reliable tool for ranking management options for a range of species despite parameter uncertainty. No one has yet investigated whether this holds true for model uncertainty for species with complex life histories and for responses to multiple threats. We tested whether a range of model structures yielded similar rankings of management and threat scenarios for 2 plant species with complex postfire responses. We examined 2 contrasting species from different plant functional types: an obligate seeding shrub and a facultative resprouting shrub. We exposed each to altered fire regimes and an additional, species‐specific threat. Long‐term demographic data sets were used to construct an individual‐based model (IBM), a complex stage‐based model, and a simple matrix model that subsumes all life stages into 2 or 3 stages. Agreement across models was good under some scenarios and poor under others. Results from the simple and complex matrix models were more similar to each other than to the IBM. Results were robust across models when dominant threats are considered but were less so for smaller effects. Robustness also broke down as the scenarios deviated from baseline conditions, likely the result of a number of factors related to the complexity of the species’ life history and how it was represented in a model. Although PVA can be an invaluable tool for integrating data and understanding species’ responses to threats and management strategies, this is best achieved in the context of decision support for adaptive management alongside multiple lines of evidence and expert critique of model construction and output.  相似文献   
9.
10.
Limits and dynamics of methane oxidation in landfill cover soils   总被引:1,自引:0,他引:1  
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a significant difference between the observed soil CH4 oxidation at field sampled conditions compared to optimum conditions achieved through pre-incubation (60 days) in the presence of CH4 (50 ml l−1) and soil moisture optimization. This pre-incubation period normalized CH4 oxidation rates to within the same order of magnitude (112-644 μg CH4 g−1 day−1) for all the cover soils samples examined, as opposed to the four orders of magnitude variation in the soil CH4 oxidation rates without this pre-incubation (0.9-277 μg CH4 g−1 day−1).Using pre-incubated soils, a minimum soil moisture potential threshold for CH4 oxidation activity was estimated at 1500 kPa, which is the soil wilting point. From the laboratory incubations, 50% of the oxidation capacity was inhibited at soil moisture potential drier than 700 kPa and optimum oxidation activity was typical observed at 50 kPa, which is just slightly drier than field capacity (33 kPa). At the extreme temperatures for CH4 oxidation activity, this minimum moisture potential threshold decreased (300 kPa for temperatures <5 °C and 50 kPa for temperatures >40 °C), indicating the requirement for more easily available soil water. However, oxidation rates at these extreme temperatures were less than 10% of the rate observed at more optimum temperatures (∼30 °C). For temperatures from 5 to 40 °C, the rate of CH4 oxidation was not limited by moisture potentials between 0 (saturated) and 50 kPa. The use of soil moisture potential normalizes soil variability (e.g. soil texture and organic matter content) with respect to the effect of soil moisture on methanotroph activity. The results of this study indicate that the wilting point is the lower moisture threshold for CH4 oxidation activity and optimum moisture potential is close to field capacity.No inhibitory effects of elevated CO2 soil gas concentrations were observed on CH4 oxidation rates. However, significant differences were observed for diurnal temperature fluctuations compared to thermally equivalent daily isothermal incubations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号