首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
  国内免费   2篇
安全科学   2篇
废物处理   2篇
环保管理   8篇
综合类   5篇
基础理论   2篇
污染及防治   10篇
评价与监测   4篇
社会与环境   2篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2001年   1篇
  1993年   1篇
排序方式: 共有35条查询结果,搜索用时 46 毫秒
1.
The present study highlights the potential application of zinc peroxide(ZnO_2)nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO_2 synthesis has been granted in United States of America(US Patent number 8,715,612; May 2014),South Africa,Bangladesh,and India. The ZnO_2 nanomaterial was capped with polyvinylpyrrolidone(PVP)to control the particle size. The PVP capped ZnO_2nanomaterial(PVP-ZnO_2)before and after adsorption of cyanide was characterized by scanning electron microscope,transmission electron microscope,X-ray diffractometer,Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO_2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO_2 was also studied as a function of p H,adsorbent dose,time and concentration of cyanide. The maximum removal of cyanide was observed in p H range 5.8–7.8 within 15 min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics.  相似文献   
2.
This paper examines the economic value of selected ecosystem services of Corbett Tiger Reserve, India. The direct cost was derived from secondary sources, and indirect and opportunity costs through socioeconomic surveys. For recreational value the individual approach to travel cost method was used, and to assess carbon sequestration the replacement cost method was used. The maintenance cost of the reserve was estimated as US $2,153,174.3 year−1. The indirect costs in terms of crop and livestock depredation by wild animals ranged from US $2,153,174.3 year−1. The indirect costs in terms of crop and livestock depredation by wild animals ranged from US 2,408 to US $37,958 village−1 over a period of 5 years. The dependence of local communities was for fuel wood (US $37,958 village−1 over a period of 5 years. The dependence of local communities was for fuel wood (US 7,346 day−1), fodder (US $5,290 day−1), small timber, and other nontimber forest products. The recreational value of the reserve was estimated as US $5,290 day−1), small timber, and other nontimber forest products. The recreational value of the reserve was estimated as US 167,619 year−1. With the cost per visitor being US $2.5, the consumers’ surplus was large, showing the willingness of visitors to pay for wildlife recreation. The forests of the reserve mitigate carbon worth US $2.5, the consumers’ surplus was large, showing the willingness of visitors to pay for wildlife recreation. The forests of the reserve mitigate carbon worth US 63.6 million, with an annual flow of US $65.0 ha−1 year−1. The other benefits of the reserve include US $65.0 ha−1 year−1. The other benefits of the reserve include US 41 million through generation of electricity since 1972. The analysis reveals that, though the benefits outweigh costs, they need to be accrued to local communities so as to balance the distribution of benefits and costs.  相似文献   
3.
4.
Abstract

The wood charcoal treated by 1N HNO3 (WCT) was used to remove toxic chlorinated pesticide lindane (y‐HCH) residue from water by the sorption process. Using a simple first order reversible kinetics constants and half time equations, the film and pore diffusion coefficients were determined. Film diffusion was found to be rate limiting step in sorbing lindane by WCT. This was further authenticated by kinetics studies at different initial sorbate concentrations, different sorbent sizes, and different agitation speeds besides interruption test. A pore diffusion model was used to fit the data of kinetics in continuously mixed batch reactors (CMBR), and the tortuosity, external resistance, and surface diffusion effects on lindane sorption by WCT were noticed. The tortuosity values of 15 to 28 were obtained for WCT‐lindane system.  相似文献   
5.
Performance of mixed microbial anaerobic culture in treating synthetic waste-water with high Chemical Oxygen Demand (COD) and varying atrazine concentration was studied. Performance of hybrid reactors with wood charcoal as adsorbent, with a dose of 10 g/l and 40 g/l, along with the microbial mass was also studied. All the reactors were operated in sequential mode with Hydraulic Retention Time (HRT) of 5 days. In all the cases, COD removal after 5 days was found to be above 81%. Initial COD was above 1,000 mg/l. From a hybrid reactor COD removal after 2 days was observed to be 90%. Atrazine reduction after 5 days by microbial mass alone was 43.8%, 40% and 33.2% with an initial concentration of 0.5, 1.0 and 2.0 mg/l respectively. MLSS on all the cases were almost same. Increasing MLSS concentration by about 2 fold did not increase the atrazine removal efficiency significantly. Maximum atrazine removal was observed to be 64% from the hybrid reactor with 10 g/l of wood charcoal and 69.4% from the reactor with 40 g/l of wood charcoal. Atrazine removal from the hybrid reactors after 15 days were observed to be 35.7% and 38.7%, which showed that the higher dose of wood charcoal in hybrid reactor did not improve the atrazine removal efficiency significantly. Specific methanogenic activity test showed no inhibitory effect of atrazine on methane producing bacteria. The performance of anaerobic microorganisms in removing atrazine with no external carbon source and inorganic nitrogen source was studied in batch mode. With an initial concentration of 1.0 mg/l, reduction of atrazine by the anaerobic microorganisms in absence of external carbon source after 35 days was observed to be 61.8% where as in absence of external carbon and inorganic nitrogen source the reduction was only 44.2% after 150 days. Volatilization loss of atrazine was observed to be insignificant.  相似文献   
6.
This review article analyzes the importance of assessing the success of ecological restoration by using four indicators: assemblage of the plant and animal communities; enzyme activity; litter accumulation and decomposition; and the improvement of soil quality. These indicators can be used alone or in combinations. Even though the Society for Ecological Restoration International provided a primer containing nine attributes to use as standards for measuring ecological restoration, only three of these attributes could be easily applied due to their low costs and low time requirements. These three attributes include: diversity, vegetation structure, and ecological processes. This review article emphasizes that the criteria for the selection of the indicator species should be based upon: habitat types, abundance of species, ease of measuring, quantifying and interpreting the results, gradual enhancement with time and cost‐effectiveness, sensitivity, variability of response, size, residential status, and requirements of the area. Principal component analysis was applied to calculate the reclaimed mine soil quality index (RMSQI) and the forest soil quality index (FSQI) and the RMSQI value was compared with FSQI (optimum index value of reference ecosystem) to evaluate the restoration success. Available phosphorus, exchangeable magnesium, organic carbon, clay content, field moisture, available nitrogen, electrical conductivity, and pH are identified as the most influential parameters that regulate the health of reclaimed mine soil. Exchangeable calcium, magnesium, cation exchange capacity, sand, silt, clay content, field moisture, available phosphorus, and pH are the controlling properties for forest soil. The observed values of the above‐stated soil indicator properties were converted into a unitless score (0–1.00) and integrated into index calculations (RMSQI and FSQI). The contribution of each soil indicator properties on the calculated index was analyzed, which provides insight into the reason for the measured index. A higher RMSQI indicates better ecological restoration success. The calculated RMSQI was found to be 0.473 in the reclaimed dump, which is 6% lower than the reference ecosystem.  相似文献   
7.
Environment, Development and Sustainability - The present study aims to highlight the contrast relationship between COVID-19 (Coronavirus Disease-2019) infections and air pollutants for the Indian...  相似文献   
8.
9.
The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre-monsoon, monsoon and post-monsoon seasons. Higher abundance of total bacterial count (TBC) in surface water near the river mouth, compared to the upstream, during pre-monsoon was followed by an opposite scenario during the monsoon When seasonally compared, it was during the post-monsoon season when TBC in surface water was highest, with simultaneous decrease in their count in the river sediment. The total viable bacterial count (TVC) was influenced by the depth-wise stratification of salinity, which varied with tidal fluctuation, usually high and low during the neap and spring tides respectively. The abundance of both the autochthonous Vibrio spp. and allochthonous coliform bacteria was influenced by the concentrations of dissolved nutrients and suspended particulate matter (SPM). It is concluded that depending on the interplay of riverine discharge and tidal amplitude, sediment re-suspension mediated increase in SPM significantly regulates bacteria populations in the estuarine water, urging the need of systematic regular monitoring for better prediction of related hazards, including those associated with the rise in pathogenic Vibrio spp. in the changing climatic scenarios.  相似文献   
10.
On December 7, 2015, the Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India (GoI), promulgated stack emission standards for sulfur dioxide (SO2), oxides of nitrogen (NOx), and mercury (Hg) from coal‐fired thermal power plants (TPPs). These standards were promulgated in addition to tightening the emission standard for particulate matter. Thus far, the GoI and a non‐governmental organization (NGO) have recommended the use of limestone‐based flue‐gas desulfurization (FGD) technology for removing only SO2 emissions, which would then require the application of additional technologies to remove the other regulated pollutants. A single technology, such as the Multi‐pollutants Control Technology (MPCT), which was recently developed elsewhere in the world and can remove all of the pollutants from the TPP, could be more economical than introducing separate technologies for the removal of each pollutant. Furthermore, unlike the limestone‐based FGD technology, which generates carbon dioxide (CO2) during the desulfurization process, the MPCT does not increase power plant CO2 emissions. Water consumption is also lower in MPCT than with the limestone‐based FGD technology. Thus, MPCT offers a lower carbon footprint as well as a lower water footprint than the limestone‐based FGD technology in accordance with the United Nations Environmental Programme's Sustainable Development Goals. In light of these observations, this article aims to assess current practices and policies and offers policy recommendations for Indian TPPs with the goal of providing a cogent technological solution that also strengthens the Decision Support System for the holistic protection of the Indian environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号