首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
环保管理   2篇
污染及防治   4篇
评价与监测   3篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2005年   3篇
  2003年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有9条查询结果,搜索用时 62 毫秒
1
1.
To improve understanding of phosphorus (P) retention processes in small constructed wetlands (CWs), we analysed variations in sediment deposition and accumulation in four CWs on clay soils in east-central Sweden. Sediment deposition (in traps) generally exceeded the total suspended solids (TSS) load suggesting that resuspension and wetland base erosion were important. This was confirmed by quantification of particle accumulation (on plates) (1–23 kg m?2 year?1), which amounted to only 13–23% of trap deposition. Spatial mean P concentrations in accumulated sediment on plates (0.09–0.15%) were generally similar to temporal mean P concentrations of particles in water (0.11–0.15%). Deposition/accumulation was minor in one wetland with high hydraulic load (400 m year?1), suggesting that such small wetlands are not efficient as particle sinks. Economic support for CWs are given, but design and landscape position are here demonstrated to be important for effective P retention.  相似文献   
2.
Wastewater discharge from sugarcane processing is a significant pollutant of tropical aquatic ecosystems. For most developing countries, monitoring of the level of pollutants is done mostly through chemical analysis, but this does not reflect potential impacts on aquatic assemblages. In addition, laboratory facilities for accurate concentration measurements are often not available for regular monitoring programs. In this study, we investigated the use of benthic macroinvertebrates for biological monitoring in western Kenya. Benthic macroinvertebrates were sampled in stabilization ponds treating wastewater from sugarcane- and molasses-based processing plants to assess their composition and abundance in relation to different concentrations of chemical variables. Optimum concentrations and tolerance values were identified for various taxa, and a biotic index was developed that combined tolerance values (ranked between 0 and 10) for the various macroinvertebrate taxa. A succession in composition and distribution of macroinvertebrate taxa was observed from the inlet to the outlet of the pond systems. Diptera dominated in the first ponds that had high concentrations of chemical oxygen demand (COD), biological oxygen demand (BOD5), and nutrients, while intolerant Ephemeroptera, Plecoptera, and Trichoptera (EPT) appeared as the concentrations dropped in subsequent ponds. The effluent quality was classified as “good,” “fair,” and “poor,” corresponding with biotic index value ranges 0–3.50, 3.51–6.50, and 6.51–10, respectively. During validation, the index grouped sites with respect to levels of measured environmental variables. The study revealed that the developed biotic index would help in monitoring the quality of sugarcane processing and molasses effluents before release into recipient aquatic ecosystems, replacing the need for costly chemical analyses.  相似文献   
3.
The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.  相似文献   
4.
Construction of wetlands is a possible supplement to best management practices (BMP) at the field level to mitigate phosphorus (P) pollution from agricultural areas. In this paper, annual results from 17 intensively studied wetlands in the cold temperate or boreal climatic zone are reported and analyzed. Surface areas varied from 0.007 to 8.7% of the catchment area. The average total phosphorus (TP) retention varied from 1 to 88%, and the dissolved reactive phosphorus (DRP) retention from -19 to 89%. Retention varied substantially from site to site, indicating the existence of site-specific factors in the catchment and wetlands that influenced the P removal. Factors important for P retention in wetlands were evaluated through multiple statistical analyses by dividing P into two fractions: particulate phosphorus (PP) and DRP. Both relative (%) PP and DRP retention increased with wetland surface area. However, PP retention was not as sensitive as DRP in terms of wetland size and retention: specific PP retention (gram P retention per m(2) and year) decreased as wetland area (A(w)) increased, suggesting the existence of a site-specific optimal wetland to catchment area (A(c)) ratio. Particulate P retention decreased with increasing DRP to TP ratio, while the opposite was found for DRP. Dissolved reactive P retention was higher in new than in old wetlands, while increasing age did not influence PP retention negatively. Effective BMP in the catchment is important to keep the P loss low, because the outlet concentration of P from wetlands is often positively correlated to the input concentration. However, wetlands act as the last buffer in a catchment, since the retention often increases as the P concentration in streams increases.  相似文献   
5.
Improved understanding of the importance of different surfaces in supporting attached nitrifying and denitrifying bacteria is essential if we are to optimize the N removal capacity of treatment wetlands. The aim of this study was therefore to examine the nitrifying and denitrifying capacity of different surfaces in a constructed treatment wetland and to assess the relative importance of these surfaces for overall N removal in the wetland. Intact sediment cores, old pine and spruce twigs, shoots of Eurasian watermilfoil (Myriophyllum spicatum L.), and filamentous macro-algae were collected in July and November 1999 in two basins of the wetland system. One of the basins had been constructed on land that contained lots of wood debris, particularly twigs of coniferous trees. Potential nitrification was measured using the isotope-dilution technique, and potential denitrification was determined using the acetylene-inhibition technique in laboratory microcosm incubations. Nitrification rates were highest on the twigs. These rates were three and 100 times higher than in the sediment and on Eurasian watermilfoil, respectively. Potential denitrification rates were highest in the sediment. These rates were three times higher than on the twigs and 40 times higher than on Eurasian watermilfoil. The distribution of denitrifying bacteria was most likely due to the availability of organic material, with higher denitrification rates in the sediment than on surfaces in the water column. Our results indicate that denitrification, and particularly nitrification, in treatment wetlands could be significantly increased by addition of surfaces such as twigs.  相似文献   
6.
Tonderski KS  Arheimer B  Pers CB 《Ambio》2005,34(7):544-551
In southern Sweden, wetlands are constructed to remove nitrogen (N) in agricultural catchments. The possible effects of such wetlands on riverine phosphorus (P) were also estimated using input-output data from three well-monitored wetlands. This was done to formulate a simple model for removal of P that is dependent on inflow characteristics. Next, the N- and P-reducing effects of wetlands were modeled on a catchment scale (1900 km2) using the HBV-NP model and various assumptions about the wetland area and location. All three wetlands functioned as sinks for total P (tot-P) and for total suspended solids (TSS) with a removal of 10% to 31% and 28% to 50%, respectively. Mean P-removal rates of 17-49 kg ha(-1) yr(-1) were well simulated with the model. Catchment scale simulations indicated that wetlands were more efficient (in percentage of load) as traps for P than for N and that this may motivate the construction of wetlands for P removal far upstream from the catchment outlet.  相似文献   
7.
The problem of estimating nutrient transport in large rivers and the uncertainty of such load estimates was studied both empirically and theoretically. In the empirical part of the study, time series of data from the Rhine, Meuse, Vistula and Oder Rivers were examined. The results of this data analysis justify the use of linear interpolation to estimate concentrations prevailing between sampling occasions. A special study of the spatial variation of concentrations within different cross-sections of the Vistula river showed that such variation can contribute substantially to the uncertainty of load estimates. In general, however, sampling at one point in the cross-section did not result in biased load estimates. In the theoretical part of the study, simple ARMA (autoregressive-moving average) models were used to derive generally applicable formulas for the expected mean square error of load estimates based on serially dependent concentration data. These formulas were then used to estimate the uncertainty of calculated nutrient loads in the Rhine and the Vistula, respectively.  相似文献   
8.
This article presents the results of the first critical examination of time series of riverine nutrient-load data for the entire Baltic Sea drainage area. Water quality data collected by or for the different national environmental agencies were compiled and analysed statistically to identify and remove inconsistent or obviously incorrect observations. Moreover, sampling tours were undertaken to acquire additional information about the present nutrient concentrations in the largest rivers in the study area. Gaps in the time series of approved data were then filled in by employing statistical interpolation and extrapolation methods. Thereafter, the concentration and runoff data were combined to obtain estimates of monthly nutrient loads for the time period 1970–93. The results of the calculations showed that although there had been substantial changes in land use, atmospheric deposition and wastewater treatment in many parts of the study area, the total riverine loads of nitrogen (N) and phosphorus (P) to the Baltic Sea have been fairly constant since 1980, and most likely also since 1970. Moreover, the interannual variation was clearly correlated to the runoff. The mean annual loads for the time period 1980–93 were found to be about 825 000 tonnes N and 41 000 tonnes P, respectively. This implies that (i) several other investigators have strongly underestimated the riverine loads of nutrients, especially the nitrogen, and that (ii) the riverine loads by far exceed the input to the Baltic Sea from other sources, {i.e.} atmospheric deposition, direct emissions from cities and industries along the Baltic Sea coast and nitrogen fixation by marine algae.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号