首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
环保管理   4篇
污染及防治   1篇
评价与监测   1篇
社会与环境   8篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  1999年   2篇
排序方式: 共有14条查询结果,搜索用时 140 毫秒
1.
Assessments of contaminant-related human and ecological risk require estimation of transport rates, but few data exist on wind-driven transport rates in nonagricultural systems, particularly in response to ecosystem disturbances such as forest wildfire and also relative to water-driven transport. The Cerro Grande wildfire in May of 2000 burned across ponderosa pine (Pinus ponderosa Douglas ex P.&C. Lawson var. scopulorum Englem.) forest within Los Alamos National Laboratory in northern New Mexico, where contaminant transport and associated post-fire inhalation risks are of concern. In response, the objectives of this study were to measure and compare wind-driven horizontal and vertical dust fluxes, metrics of transport related to wind erosion, for 3 yr for sites differentially affected by the Cerro Grande wildfire: unburned, moderately burned (fire mostly confined to ground vegetation), and severely burned (crown fire). Wind-driven dust flux was significantly greater in both types of burned areas relative to unburned areas, by more than one order of magnitude initially and by two to three times 1 yr after the fire. Unexpectedly, the elevated dust fluxes did not decrease during the second and third years in burned areas, apparently because ongoing drought delayed post-fire recovery. Our estimates enable assessment of amplification in contaminant-related risks following a major type of disturbance-wildfire, which is expected to increase in intensity and frequency due to climate change. More generally, our results highlight the importance of considering wind- as well as water-driven transport and erosion, particularly following disturbance, for ecosystem biogeochemistry in general and human and ecological risk assessment in particular.  相似文献   
2.
To measure the long term retention and seasonal dynamics of an initial 4 kg addition of 133Cs into an 11.4-ha, 157,000 m3 reservoir (Pond 4, near Aiken, South Carolina, USA), the concentrations and inventories of 133Cs in the water column were measured at periodical intervals for 522 days following the 1 August, 1999 release. After rapid declines in concentrations and inventories during the first 90 days, the 133Cs concentrations in the water column declined at an average proportional rate of 0.004 d−1. However, there were periods of less rapid and more rapid rates of declines, and these were correlated with periods of increasing and decreasing K concentrations in the water column. The decline rates were less and the K concentrations greater in the winter than in the summer. In the deeper, neighboring monomictic reservoirs of Par Pond and Pond B, a yearly cycle of increasing and decreasing 137Cs concentrations in the water column is driven by anoxic remobilization of Cs from the sediments into a persistent summer hypolimnion. In Pond 4, whose mean depth of 1.6 m is too shallow to support a persistent anoxic hypolimnion, the pattern of yearly dynamics for K and Cs appear to be related to the accumulation and release of these elements from the extensive, seasonal macrophyte communities. The contrasting results between Pond 4 and Pond B suggest that a full appreciation of the relative importance of 1) anoxic remobilization and 2) accumulation and release by macrophytes in these systems remains to be established.  相似文献   
3.
An uptake parameter u (L kg−1 d−1) and a loss rate parameter k (d−1) were estimated for the patterns of accumulation and loss of 133Cs by three fish species following an experimental 133Cs addition into a pond in South Carolina, USA. These u and k parameters were compared to similar estimates for fish from other experimental ponds and from lakes that received 137Cs deposition from Chernobyl. Estimates of u from ponds and lakes declined with increasing potassium concentrations in the water column. Although loss rates were greater in the experimental ponds, the times required to reach maximum Cs concentrations in fish were similar between ponds and lakes, because ponds and lakes had similar retentions of Cs in the water column. The maximum Cs concentrations in fish were largely determined by initial Cs concentrations in the water column. These maximum concentrations in fish and the times required to reach these maxima are potentially useful indicators for assessments of risks to humans from fish consumption.  相似文献   
4.
Of the natural processes that concentrate dispersed environmental contaminants, landscape fire stands out as having potential to rapidly concentrate contaminants and accelerate their redistribution. This study used rainfall simulation methods to quantify changes in concentration of a widely dispersed environmental contaminant (global fallout 137Cs) in soils and surface water runoff following a major forest fire at Los Alamos, New Mexico, USA. The 137Cs concentrations at the ground surface increased up to 40 times higher in ash deposits and three times higher for the topmost 50 mm of soil compared with pre-fire soils. Average redistribution rates were about one order of magnitude greater for burned plots, 5.96 KBq ha(-1) mm(-1) rainfall, compared with unburned plots, 0.55 KBq ha(-1) mm(-1) rainfall. The greatest surface water transport of 137Cs, 11.6 KBq ha(-1) mm(-1), occurred at the plot with the greatest amount of ground cover removal (80% bare soil) following fire. Concentration increases of 137Cs occurred during surface water erosion, resulting in enrichment of 137Cs levels in sediments by factors of 1.4 to 2.9 compared with parent soils. The elevated concentrations in runoff declined rapidly with time and cumulative precipitation occurrence and approached pre-fire levels after approximately 240 mm of rainfall. Our results provide evidence of order-of-magnitude concentration increases of a fallout radionuclide as a result of forest fire and rapid transport of radionuclides following fire that may have important implications for a wide range of geophysical, ecosystem, fire management, and risk-based issues.  相似文献   
5.
To document the short-term dynamics of Cs, 4 kg of (133)Cs were introduced into an 11.4-ha, 157 000 m(3) reservoir previously contaminated with (137)Cs from past reactor operations at the US Department of Energy's Savannah River Site near Aiken, South Carolina, USA. The (133)Cs addition resulted in an increase of 6.1 MBq of (137)Cs (1.9 mug (137)Cs) in the water column over the following 260 days. Possible sources for the increased (137)Cs included (1) release from the sediments, (2) release from the approximately 26 000 kg of aquatic macrophytes that occupied 80% of the reservoir, and (3) wash-in from the pond's watershed. Data are presented to indicate that release from the sediments was the principal source of the (137)Cs increase. The fraction of (137)Cs released from the sediments (0.7%) is consistent with laboratory measurements of (137)Cs desorption from neighboring ponds on the Savannah River Site.  相似文献   
6.
The rates of accumulation and subsequent loss of stable cesium (133Cs) by organisms at different trophic levels within plankton-based and periphyton-based food chains were measured following the addition of 133Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (L kg−1 d−1 dry mass) and a loss rate parameter k (d−1) were estimated for each organism using time-series measurements of 133Cs concentrations in water and biota, and these parameters were used to estimate maximum concentrations, times to maximum concentrations, and concentration ratios (Cr). The maximum 133Cs concentrations for plankton, periphyton, the insect larva Chaoborus punctipennis, which feeds on plankton, and the snail Helisoma trivolvis, which feeds on periphyton, occurred within the first 14 days following the addition, whereas the maximum concentrations for the fish species Lepomis macrochirus and Micropterus salmoides occurred after 170 days. The Cr based on dry mass for plankton and C. punctipennis were 1220 L kg−1 and 5570 L kg−1, respectively, and were less than the Cr of 8630 L kg−1 for periphyton and 47,700 L kg−1 for H. trivolvis. Although the Cr differed between plankton-based and periphyton-based food chains, they displayed similar levels of biomagnification. Biomagnification was also indicated for fish where the Cr for the mostly nonpiscivorous L. macrochirus of 22,600 L kg−1 was three times less than that for mostly piscivorous M. salmoides of 71,500 L kg−1. Although the Cr for M. salmoides was greater than those for periphyton and H. trivolvis, the maximum 133Cs concentrations for periphyton and H. trivolvis were greater than that for M. salmoides.  相似文献   
7.
8.
Cynomys spp.) have been labeled as keystone species because of their influence on biological diversity and ecosystem function. However, the validity of several assumptions used to support keystone status is questionable. We review the strength of the evidence and the magnitude of the prairie dog's effects on ecosystem structure and function. We use this review to reevaluate the keystone role for prairie dogs. Our goal is to encourage sound management of the prairie dog ecosystem by improving the ecological foundation of their keystone status. Our review confirms that prairie dogs affect a number of ecosystem-level functions but that their influence on prairie vertebrates may be less than previously suggested. Species richness and abundance patterns were variable among plants, mammals, and birds and were not consistently higher on prairie dog colonies compared to uncolonized areas. In addition, only nine of the 208 species listed in the literature as observed on or near prairie dogs colonies had quantitative evidence of dependence on prairie dogs. Abundance data indicated opportunistic use of colonies for an additional 20 species. A total of 117 species may have some relationship with prairie dogs, but we lacked sufficient data to evaluate the strength of this relationship. The remaining 62 species may be accidental or alien to the system. Despite our conclusion that some prairie dog functions may be smaller than previously assumed, collectively these functions are quite large compared to other herbivores in the system. We suggest that prairie dogs also provide some unique functions not duplicated by any other species and that continued decline of prairie dogs may lead to a substantial erosion of biological diversity and landscape heterogeneity across prairie and shrub-steppe landscapes. Thus, we concur that keystone status for prairie dogs is appropriate and may aid conservation efforts that help protect species dependent on prairie dogs and support other important ecosystem functions.  相似文献   
9.
The probable occurrence and rate of foliar absorption of stable cesium (133Cs) from the water column by aquatic macrophyte species was analyzed following the addition of 133Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10(3)Lkg(-1)d(-1)) and a loss rate parameter k (d(-1)) were estimated for each species using time series of 133Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the 133Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u> or =0.75 x 10(3)Lkg(-1)d(-1). Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for 137Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.  相似文献   
10.
Biodosimetry, the estimation of received doses by determining the frequency of radiation-induced chromosome aberrations, is widely applied in humans acutely exposed as a result of accidents or for clinical purposes, but biodosimetric techniques have not been utilized in organisms chronically exposed to radionuclides in contaminated environments. The application of biodosimetry to environmental exposure scenarios could greatly improve the accuracy, and reduce the uncertainties, of ecological risk assessments and biomonitoring studies, because no assumptions are required regarding external exposure rates and the movement of organisms into and out of contaminated areas. Furthermore, unlike residue analyses of environmental media, environmental biodosimetry provides a genetically relevant biomarker of cumulative lifetime exposure. Symmetrical chromosome translocations can impact reproductive success, and could therefore prove to be ecologically relevant as well. We describe our experience in studying aberrations in the yellow-bellied slider turtle as an example of environmental biodosimetry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号