首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
环保管理   2篇
评价与监测   3篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 187 毫秒
1
1.
Roadside soils were sampled from the Lagos Lagoon catchment during the wet and dry seasons over the period 2005-2009. Lagoon sediment samples were also collected within the same period. All samples were digested with aqua regia to determine total phosphorus and extracted with 0.5 M sodium bicarbonate to determine the bioavailable fraction (Olsen-P). A segmented flow analyser method was used for analysis and good accuracy was demonstrated for two reference soils (SO-2 from CCMET and SRM 2711 from NIST). The Lagos Lagoon is a hypereutrophic water body (1270 ± 1170 μg P L(-1)), with significant areas of anoxia and water hyacinth growth. The total phosphorus concentrations in roadside soils (16 sites; mean ± 2 S.D.) were 285 ± 279 mg kg(-1) in the wet season and 424 ± 629 mg kg(-1) in the dry season, indicating that rainwater leaching is a major source of phosphorus in the lagoon. The bioavailable fractions were 5.17 ± 3.47 mg kg(-1) (2.1 ± 1.5% of the total) in the wet season and 13.0 ± 8.7 mg kg(-1) (4.3 ± 4.5% of the total) in the dry season.  相似文献   
2.
Unfiltered and filtered (0.45 and 0.2 microm) water samples and sediment samples (sieved to <180 microm and 180-1000 microm) were collected along an approximately 15 km transect of the River Fal, Cornwall, UK, to examine the impact of the disused South Terras uranium mine on the uranium concentrations of the river water and underlying sediments. The uranium concentration of the water samples fluctuated along the river, with the 0.45 microm filtered water showing the largest, seven-fold, difference between minimum (0.19 microg L(-1)) and maximum (1.34 microg L(-1)) concentrations. The historical uranium mine and spoil heaps were not a significant source of uranium to the river water, as water concentrations were low next to the site, but a highly elevated uranium concentration (1000 mg kg(-1)) was found in sediment below an outflow pipe from this mine. Operationally defined "colloidal" (0.2-0.45 microm) and "dissolved" (<0.2 microm) uranium were the predominant forms of the element in the river water (35 and 45% respectively). The uranium concentration in the dissolved phase showed a correlation coefficient of 0.83 (n= 9) with the total cation concentration, suggesting that the uranium concentration in this fraction is directly linked to weathering of rocks and minerals. The observation that weathering is the dominant mechanism delivering uranium to the river water explains the low uranium concentrations in the river water close to South Terras mine, despite the proximity of the spoil heaps, and the maximum uranium concentrations close to a china clay mining area.  相似文献   
3.
This study reports the results from the analyses of a 30-year (1974–2004) river water quality monitoring dataset for NO x –N (NO3–N?+?NO2–N), NH4–N, PO4–P and SiO2–Si at the tidal limit of the River Tamar (SW England), an agriculturally dominated and sparsely populated catchment. Annual mean concentrations of NH4–N, PO4–P and SiO2–Si were similar to other rural UK rivers, while annual mean concentrations of NO x –N were clearly lower. Estimated values for the 1940s were much lower than for those of post-1974, at least for NO3–N and PO4–P. Flow-weighted mean concentrations of PO4–P decreased by approximately 60 % between 1974 and 2004, although this change cannot be unequivocally ascribed to either PO4–P stripping from sewage treatment work effluents or reductions in phosphate fertiliser applications. Lower-resolution sampling (to once per month) in the late 1990s may also have led to the apparent decline; a similar trend was also seen for NH4–N. There were no temporal trends in the mean concentrations of NO x –N, emphasising the continuing difficulty in controlling diffuse pollution from agriculture. Concentrations of SiO2–Si and NO x –N were significantly and positively correlated with river flows ≤15 m3?s?1, showing that diffuse inputs from the catchment were important, particularly during the wet winter periods. In contrast, concentrations of PO4–P and NH4–N did not correlate across any flow window, despite the apparent importance of diffuse inputs for these constituents. This observation, coupled with the absence of a seasonal (monthly) cycle for these nutrients, indicates that, for PO4–P and NH4–N, there were no dominant sources and/or both undergo extensive within-catchment processing. Analyses of nutrient fluxes reveal net losses for NO3–N and SiO2–Si during the non-winter months; for NO3–N, this may be due to denitrification. Areal fluxes of NO x –N from the catchment were towards the higher end of the range for the UK, while NH4–N and PO4–P were closer to the lower end of the ranges for these nutrients. These data, taken together with information on sestonic chlorophyll a, suggest that water quality in the lower River Tamar is satisfactory with respect to nutrients. Analyses of these monitoring data, which were collected at considerable logistical and monetary cost, have revealed unique insights into the environmental behaviour of key nutrients within the Tamar catchment over a 30-year period.  相似文献   
4.
This paper reports the use of a new technique, flow field-flow fractionation (FlFFF), for the characterization of soil sampled under grassland. FlFFF can be used to determine the fine colloidal material in the <1 microm fraction obtained by gravitational settling of 1% m/v soil suspensions. The aim of this work was to determine the potential of FIFFF to characterize soil colloids in drained and undrained field lysimeters from soil cores sampled at different depths. Two different grassland lysimeter plots of 1 ha, one drained and one undrained, were investigated, and the soil was sampled at 20-m intervals along a single diagonal transect at three different depths (0-2, 10-12, and 30-32 cm). The results showed that there was a statistically significant (P = 0.05) increase in colloidal material at 30- to 32-cm depth along the transect under the drained lysimeter, which correlates with disturbance of the soil at this depth due to the installation of tile drains at 85-cm depth backfilled to 30-cm depth with gravel. Laser sizing was also used to determine the particles in the size range 1 to 2000 microm and complement the data obtained using FlFFF because laser sizing lacks resolution for the finer colloidal material (0.1-1.0 microm). The laser sizing data showed increased heterogeneity at 30- to 32-cm depth, particularly in the 50 to 250 microm size fraction. Therefore FIFFF characterized the finer material and laser sizing the coarser soil fraction (<2000 microm) at depth in drained and undrained grassland. This is of importance as colloidal material is more mobile than the larger material and consequently an important vector for contaminant transport from agricultural land to catchments.  相似文献   
5.
This paper describes the results of an export coefficient modeling approach to predict total phosphorus (TP) loading in the Frome catchment, Dorset, UK from point and diffuse sources on a seasonal (monthly) basis in 1998 and on an annual basis for 1990-1998. The model predicted an annual TP load of 25 605 kg yr(-1), compared with an observed (measured) value of 23400 kg yr(-1). Monthly loads calculated using the export coefficient model agreed well with monthly observed values except in months of variable discharge, when observed values were low, probably due to infrequent, and therefore unrepresentative, sampling. Comparison between filterable reactive phosphorus (FRP) and TP concentrations observed in the period 1990-1997 showed that trends in FRP could be estimated from trends in TP. A sensitivity analysis (varying individual export coefficients by +/-10%) showed that sewage treatment works (STWs) (3.5%), tilled land (2.7%), meadow-verge-seminatural (1.0%), and mown and grazed turf (0.6%) had the most significant effect (percent difference from base contribution) on model prediction. The model was also used to estimate the effect of phosphorus stripping at STWs in order to comply with a pending change in the European Union wastewater directive. Theoretical reduction of TP from the largest STW in the catchment gave a predicted reduction in TP loading of 2174 kg yr(-1). This illustrates the value of this seasonal export coefficient model as a practical management tool.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号