首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
综合类   5篇
  2015年   1篇
  2014年   4篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
缙云山3种典型森林降雨过程及其氮素输入   总被引:3,自引:1,他引:2  
选取重庆缙云山的常绿阔叶林、毛竹林和针阔混交林为研究对象,于2012年5~10月对大气降水、穿透雨和树干径流等降水过程及其氮素输入进行研究.结果表明:①研究期间总降雨量564.88 mm,常绿阔叶林、毛竹林和针阔混交林的穿透雨量占总降雨量的比例分别为74.0%、85.0%和71.6%,且树干径流量所占比例分别为1.9%、10.3%和1.6%;3种林分的穿透雨量、树干径流量与林外降雨量之间均呈显著的线性关系(P<0.05),且穿透雨率、树干径流率与林外降雨量之间都呈对数关系(P<0.05).②与大气降水相比,穿透雨和树干径流的NO-3和NH+4浓度要高,且3种林分的大小关系为针阔混交林>常绿阔叶林>毛竹林;穿透雨和树干径流的总无机氮输入量(以N计)分别为针阔混交林(18.93 kg·hm-2)、常绿阔叶林(14.93 kg·hm-2)和毛竹林(15.31 kg·hm-2).③3种林分的无机氮输入量与穿透雨量、树干径流量之间均呈显著的线性关系(P<0.05).  相似文献   
2.
以重庆缙云山亚热带针阔混交林为研究区,研究了土壤呼吸及其Q10(温度敏感性系数,指温度增加10℃所造成的呼吸速率改变的商)的时间变异特征,并深入分析二者受土壤温度、湿度变化的影响.2011年4—12月采用LI-8100二氧化碳通量测量系统观测选取样地的R S(土壤呼吸速率)、土壤5 cm深处的T5(土壤温度)和W5(土壤湿度),分析R S与Q10的变化规律;同时利用单一和二元混合模型探讨T5和W5对R S、Q10的影响.结果表明:①在观测期内R S和T5月均值均呈单峰曲线变化;R S的变化范围在(1.38±0.15)~(3.94±0.21)μmol/(m2·s)之间,T5的变化范围在(9.28±0.65)~(22.99±1.14)℃之间;由于受到自然降水影响,W5的月际变化不规律.②Q10季节差异明显,最大值(3.31)出现在春季,观测期内的平均值为2.01.③R S与T5之间呈显著正相关(P0.05),与W5的关系不明显(P0.05);R S与T5、W5的关系模型拟合度分别为87%和26%;T5与W5的复合模型对R S的变化解释能力为89%,高于单一模型.④影响Q10的主要因素是T5,其次为W5.  相似文献   
3.
重庆缙云山4种典型林分土壤氮素动态变化   总被引:1,自引:0,他引:1       下载免费PDF全文
于2012年4—10月逐月月末采集重庆缙云山4种典型林分(常绿阔叶林、毛竹林、针阔混交林和针叶林)样地中不同深度(0~15、>15~30、>30~60 cm)的土壤样品,测定土壤中w(TN)、w(NH4+-N)和w(NO3--N),分析土壤氮素含量的分布特征,并探讨土壤理化性质对土壤氮素含量的影响. 结果表明:①不同林分土壤中氮素含量的垂直分布规律相一致,均表现为随土壤深度的增加而不断降低,并且w(NH4+-N)>w(NO3--N);②不同林分0~60 cm土壤平均氮密度表现为毛竹林(1.037 kg/m2)>针阔混交林(0.783 kg/m2)≈常绿阔叶林(0.778 kg/m2)>针叶林(0.747 kg/m2);③不同林分土壤中w(TN)的季节性变化规律不明显,而w(NH4+-N)和w(NO3--N)的季节性变化规律相似,均表现为春季<夏季<秋季;④不同林分土壤中w(TN)、w(NH4+-N)和w(NO3--N)与容重、w(SOC)均呈显著线性相关(P<0.05),而且与土壤其他养分含量之间也存在一定的相关性.   相似文献   
4.
以重庆缙云山亚热带针阔混交林为研究区,研究了土壤呼吸及其Q10(温度敏感性系数,指温度增加10℃所造成的呼吸速率改变的商)的时间变异特征,并深入分析二者受土壤温度、湿度变化的影响. 2011年4—12月采用LI-8100二氧化碳通量测量系统观测选取样地的RS (土壤呼吸速率)、土壤5cm深处的T5(土壤温度)和W5(土壤湿度),分析RS与Q10的变化规律;同时利用单一和二元混合模型探讨T5和W5对RS、Q10的影响. 结果表明:①在观测期内RS和T5月均值均呈单峰曲线变化;RS的变化范围在(1.38±0.15)~(3.94±0.21)μmol/(m2·s)之间,T5的变化范围在(9.28±0.65)~(22.99±1.14)℃之间;由于受到自然降水影响,W5的月际变化不规律. ②Q10季节差异明显,最大值(3.31)出现在春季,观测期内的平均值为2.01. ③RS与T5之间呈显著正相关(P<0.05),与W5的关系不明显(P>0.05);RS与T5、W5的关系模型拟合度分别为87%和26%;T5与W5的复合模型对RS的变化解释能力为89%,高于单一模型. ④影响Q10的主要因素是T5,其次为W5.   相似文献   
5.
以重庆缙云山针阔混交林为试验地,开展针阔混交林土壤各组分呼吸速率的分离量化及其与环境因子之间的关系研究. 于2011—2013年生长季(4—9月),利用壕沟断根和移除凋落物方法区分RA(自养呼吸速率)、RH(异养呼吸速率)、RL(凋落物呼吸速率)及RSOM(有机质呼吸速率);同时,实地观测土壤各组分呼吸速率、AT(大气温度)、SR(太阳总辐射强度)、ST(5 cm深处土壤温度)和SW(5 cm深处土壤湿度),并通过相关性分析,研究土壤各组分呼吸速率与环境因子之间的关系. 结果表明:①除RL外,其他组分呼吸速率的月际变化均呈单峰曲线趋势,最大值均出现在6月或7月,月均值差异显著(P<0.05);土壤各组分呼吸速率年均值年际变化均不明显(P>0.05),但土壤各组分呼吸速率年均值之间存在显著差异(P<0.05). ②RA和RH分别占RT(土壤总呼吸速率)的27%和73%,RSOMSOM占RH的63%. ③除RL外,其他土壤组分呼吸均与AT和ST呈显著相关(P<0.05),表明AT和ST是影响土壤各组分呼吸速率的主要因子. ④指数模型最适用于描述该区AT和ST与土壤各组分呼吸速率之间的关系;除RL外,其他土壤组分呼吸对AT的敏感性Q10(温度每增加10 ℃所造成的呼吸速率改变的商)高于ST,并且不同组分呼吸的Q10之间存在差异.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号