首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   2篇
安全科学   2篇
综合类   2篇
污染及防治   1篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 9 毫秒
1
1.
从经尿素驯化的活性污泥中筛选出3株产脲酶菌,经16S r RNA基因序列分析分别为芽孢杆菌属(Bacillus sp.)、蜡样芽孢杆菌(Bacillus cereus)、微球菌属(Micrococcus),其中1株产脲酶活性较高的菌株UPB1具有明显诱导碳酸钙沉积的能力。探究了UPB1菌诱导氯化钙、醋酸钙、乳酸钙、葡萄糖酸钙4种不同钙源生成CaCO_3的晶型特征及Ca~(2+)浓度对UPB1菌诱导碳酸钙沉积效率的影响。结果表明:CaCl_2作为UPB1菌的钙源效果最好,生成热力学最稳定的菱面体型CaCO_3;基于最佳钙源,在金相显微镜下观察UPB1菌诱导CaCO_3沉积的动态过程,显示出在MICP过程中,UPB1菌诱导生成的CaCO_3晶体首先为细小颗粒状,然后逐渐汇集成薄片状,进而形成菱面体型,在整个过程中UPB1菌为CaCO_3晶体提供了有效的成核位点;在不同Ca~(2+)浓度下,UPB1菌诱导碳酸钙沉积效率各异,当CaCl_2浓度为0.25 mol/L时,UPB1菌诱导碳酸钙沉积效率最高,此时,CaCO_3晶体的生成量为0.684 1 g,电导率增加率达82.7%,Ca~(2+)转化率为90.85%。  相似文献   
2.
水体中高氯酸盐(ClO-4)污染控制技术   总被引:1,自引:0,他引:1  
系统介绍了现阶段水体中高氯酸盐(ClO4-)污染控制技术;分析了各种技术的优点与局限性;指出离子交换、生物降解与修复是目前处理水体中ClO4-的主要技术,认为探寻有效的组合处理工艺,开发更经济、高效的新处理技术,将是今后控制水体ClO4-污染的研究重点.  相似文献   
3.
城镇生活污水是地表水硝酸盐(NO-3)的重要来源,但其NO-3浓度和同位素组成(δ15N-NO-3和δ18O-NO-3)仍不明确,特别是污水处理工艺对出水NO-3浓度、δ15N-NO-3和δ18O-NO-3影响仍不清楚.选择焦作市污水处理厂作为研究载体,每隔8 h收集污水厂进水、二沉池出水以及总排口出水样品,连续收集3 d,分析NH+4浓度、 NO-3浓度以及δ15N-NO-3和δ18O-NO-  相似文献   
4.
以项城市地下水为主要研究对象,采用主成分分析方法和Q型层次聚类分析方法,辨别地下水化学变化不同来源,以判断地下水化学组成的主要控制因素.采用主成分分析方法,对102个地下水化学组成提取特征值大于1的5个主成分,累计贡献率达到73.10%.主成分1显示,TDS、总硬度、Cl-、Cd和Pb具有良好的正相关关系,表明地下水水质可能受到来方于工业废水的影响:主成分2显示,F-、I-和pH值具有良好的正相关关系,表明地下水水质受到水-岩作用的影响:生成分3显示,K+和P具有很好的相关性,与Cr也具有较好的相关性,表明地下水受化学肥料的影响:主成分4显示,COD、氨氰和Cu具有较好的相关性,表明地下承受到生活污水的影响;主成分5显示,NO3-和NO2-具有正相关性,表明地下水受化学肥料的影响,者与Mn具有负相关性,表明地下水存在部分还原环境.Q型层次聚类分析将项城市102个地下水水样分为4组:1)受工业废水入渗潜在影响的地下水,其TDS、总硬度、NO3-、Cl-、Pb、Cr、Cd和Ba质量浓度较高,pH值较低,主要分布在研究区的北部、中部和东南部,占研究区比例为28 4%;2)受生活污水入渗和农业面源污染潜在影响的地下水,其K+、Cu、P、COD、NH4+和NO2-质量浓度较高,主要分布在研究区的中北部和中南部,占研究区比例为17.6%;3)受水-岩相互作用潜在影响的地下水,其I-、F-和pH值质量浓度较高,地下水埋深最深,分布较分散,占研究区比例为12.7%;4)混合水,其上述离了质量浓度中等,主要分布在研究区的中西部和南部,占研究区比例为41.39%.结果表明,研究区地下水污染与工业废水、生活污水和农业面源污染等有密切关系,且地下水埋深越浅,地下水污染程度越高.  相似文献   
5.
为探究循环荷载下砂岩试件的变形损伤特性,开展3种不同幅值下的循环加卸载试验,分析应力比对砂岩变形损伤与能量耗散特性的影响规律。结果表明:应力比越大,相邻加载段应变差越大,部分高应力下不可恢复的变形在低应力时有所恢复;当应力比为0.50和0.67时,各循环泊松比相差不大,介于0.231~0.247之间,而当应力比为0.88时,泊松比随循环数有增加趋势;应力比越大耗散能占比越大,试件吸收并转化为用于自身损伤的能量越大。高应力循环荷载下试件损伤逐渐积累,在衡量试件损伤变化时采用的耗散能只考虑了轴向残余应变与应力,忽略了径向变形的影响。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号