首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   8篇
安全科学   4篇
综合类   9篇
污染及防治   7篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
以两种新型涂铁改性石英砂(纳米氧化铁改性砂,Nano-OCS;氧化铁改性砂,IOCS)及普通石英砂(RQS)为研究对象,考察了两种新型改性砂对沉后水腐殖酸及浊度的直接过滤效果,对其反冲洗条件进行优化研究,并对3种滤料的过滤效果进行了比较.结果表明,1滤层厚度为45 cm时,最佳滤速为6 m·h-1;3种滤料对腐殖酸和浊度的直接过滤效果依次为:Nano-OCSIOCSRQS,其中两种涂铁砂对腐殖酸的去除率分别为71.70%和61.61%;2Nano-OCS和IOCS滤柱的反冲洗流程分4步,对应的流程及最佳操作条件为:首先,用0.5 mol·L-1NaOH的溶液浸泡,气冲强度13 L·s-1·m-2,气冲时间6 min;然后,用0.075 mol·L-1的NaOH溶液与空气同时反冲洗,NaOH溶液冲洗强度为8 L·s-1·m-2,气冲强度13 L·s-1·m-2,冲洗时间3 min;接着用0.015 mol·L-1的FeCl3溶液与空气同时反冲洗,FeCl3溶液冲洗强度为8 L·s-1·m-2,气冲强度13L·s-1·m-2,冲洗时间2 min;最后,用清水冲洗,冲洗强度8 L·s-1·m-2,冲洗时间4 min.两种涂铁砂反冲洗前后表面形态结构更加复杂、粗糙度增加,对腐殖酸去除率进一步提高.3当滤层厚度由45 cm增加到80 cm时,Nano-OCS对腐殖酸直接过滤的最高去除率由74.6%提高至80.3%,平均去除率由57.9%提高至68.5%.  相似文献   
2.
以氧化石墨烯(GO)与纳米二氧化钛(TiO_2)为改性剂,采用界面聚合法与抽滤吸附结合,对聚偏氟乙烯中空纤维超滤膜(简称原膜)进行表面改性,得到新型纳米改性膜(简称GO-TiO_2改性膜).研究改性膜的制备工艺条件及其对腐殖酸(HA)的吸附截留性能与抗污染特性.结果表明:(1)最佳制备工艺条件为:钛酸丁酯2 m L、GO 1 mg、间苯二胺1%(质量分数)、间苯二胺浸泡时间8 min、均苯三甲酰氯0.2%(质量分数)、均苯三甲酰氯浸泡时间10 min;(2)亲水性提高显著,亲水性表面为GO-聚酰胺-TiO_2复合结构,改性膜接触角由80.6°±1.8°下降到38.6°±1.2°;(3)抗污染性能提高明显.改性膜通量总衰减率由改性前的51.2%下降到35.6%,过滤周期约为原膜的2.5倍;反冲洗后膜通量恢复率由69%提高到96%.  相似文献   
3.
试验考察了二氧化氯(ClO_2)杀灭拟柱孢藻过程中不同条件下柱孢藻毒素(CYN)随时间的释放规律,对释放量与时间数据进行曲线方程拟合,并以透射电镜观察不同反应时间拟柱孢藻细胞形态,对柱孢藻毒素的释放机理进行分析。结果表明,反应初期5 min内CYN释放率随时间延长快速提高,随后增长缓慢,30 min后趋于稳定。ClO_2投加量影响了CYN释放速率,1.0 mg/L ClO_2投加量时CYN释放率要高于0.5 mg/L和0.7 mg/L时,但在反应2 h后不同ClO_2投加量的CYN释放率趋于接近。拟柱孢藻初始浓度对CYN释放率的影响不明显。CYN释放率在酸性条件下高于中性和碱性条件。随反应温度升高,CYN释放率逐渐升高。各种反应条件下CYN释放量与反应时间的关系可以用曲线方程来表示。藻细胞形态随反应时间延长发生变化。ClO_2投加量增大,藻细胞结构的破坏程度加剧。在反应初期CYN释放是通过扩散作用而并非由细胞壁的破裂而致。  相似文献   
4.
介绍了 3池交替运行活性污泥法进行生物除磷脱氮的运行模式 ,从理论上探讨了溶解氧、污泥龄等运行参数的确定与控制及碳源、硝酸盐对工艺生物除磷脱氮的影响。  相似文献   
5.
城市污水处理厂采用多点进水的改良A2/O生物脱氮除磷工艺,取得了较好的脱氮除磷效果.在工艺运行中,通过采取有效的调控措施,保证了生化池脱氮除磷各反应单元的溶解氧要求,得到了较佳的工艺运行参数控制范围.  相似文献   
6.
3池交替运行活性污泥法生物除磷脱氮的探讨   总被引:4,自引:1,他引:4  
介绍了3池交替运行活性污泥法进行生物除磷脱氮的运行模式,从理论上探讨了溶解氧、污泥龄等运行参数的确定与控制及碳源、硝酸盐对工艺生物除磷脱氮的影响。  相似文献   
7.
研究了负载于玻璃上的固定化催化剂TiO2膜光催化降解水中三氯乙醛的效果,探讨了TiO2膜光催化降解三氯乙醛的机理,考察了溶液pH值和三氯乙醛初始浓度埘TiO2膜光催化降解三氯乙醛的影响,并研究了固定化催化剂TiO2膜光催化降解三氯乙醛的动力学.结果表明,固定化催化剂TiO2膜光催化降解水中三氯乙醛的效果良好,当三氯乙醛初始浓度为2.25 mg/L时,在紫外光照时间3 h下,三氯乙醛的降解率高达100%.在相司紫外光照时间下,三氯乙醛的光催化降解率随着三氯乙醛初始浓度的增大而下降.在溶液pH=6.5时,三氯乙醛的降解效率最高.固定化催化剂TiO2膜光催化降解三氯乙醛的反应遵循一级反应动力学,反应速率常数随三氯乙醛初始浓度的增大而减小.  相似文献   
8.
实验研究亚铁盐对来自于供水水库的含藻原水二氧化氯杀藻过程中产生的无机副产物亚氯酸盐去除的效果及亚铁盐的投加量,同时考察亚铁盐在去除亚氯酸盐的过程中的除浊作用。实验结果表明,FeSO4能完全去除二氧化氯杀藻的无机副产物亚氯酸盐。FeSO4在去除亚氯酸盐的同时也与二氧化氯反应而使二氧化氯的浓度降低。FeSO4的用量是亚氯酸盐和二氧化氯与FeSO4反应的理论用量的总和。在二氧化氯预氧化杀藻与投加FeSO4的时间间隔较短的情况下,FeSO4的投加量按照初始投加量70%的二氧化氯与FeSO4反应的化学计量关系计算确定,此时亚氯酸盐能完全被去除。FeSO4在去除亚氯酸盐的同时具有除浊作用,在饮用水的净化中可以减少常规混凝剂的用量,当浊度为23.3 NTU或24.3 NTU时,不需再投加常规混凝剂。FeSO4的絮凝作用对除藻有协同作用。  相似文献   
9.
采用化学共沉淀一步法制备了磁性锌铝类水滑石(M·Zn/Al LDHs),并经煅烧得到磁性焙烧态锌铝类水滑石(M·Zn/Al LDO),用以吸附去除水中腐殖酸。文章探讨了M·Zn/Al LDO去除腐殖酸的影响因素,研究了M·Zn/Al LDO吸附腐殖酸的动力学与热力学,考察了吸附腐殖酸后M·Zn/Al LDO焙烧再生的条件。结果表明,当M·Zn/Al LDO投加量0.2 g/L时腐殖酸去除率随着投加量的增大而增大,腐殖酸的初始浓度增大时吸附量增大但去除率减小。在pH 4~8腐殖酸去除率较高,保持在97%以上。NO_3~-和F~-对去除腐殖酸的影响甚微,而H_2PO_4~-则影响较大。拟二级动力学模型与Langmuir吸附等温线较好地描述吸附过程,吸附过程以物理吸附为主,化学吸附为辅。吸附腐殖酸后的M·Zn/Al LDO通过煅烧恢复焙烧态锌铝类水滑石结构,腐殖酸分解,再生效果良好,且磁性未被破坏。可见,磁性焙烧态锌铝类水滑石是一种高效且有潜在应用前景的去除腐殖酸的水处理材料。  相似文献   
10.
纳米Fe2O3与纳米SiO2对石英砂表面改性的制备工艺优化研究   总被引:1,自引:1,他引:0  
以普通石英砂滤料为原材料,纳米Fe2O3、纳米SiO2为改性剂,环氧树脂为粘结剂,表面负载量和附着强度为评价指标,通过正交试验与固定因素不同水平连续性试验等方法,制备了两种纳米氧化物改性石英砂(Nano-oxide coated sand,Nano-OCS).同时,研究了不同制备因素对Nano-OCS表面氧化铁负载量和附着强度的影响,并探讨Nano-OCS制备工艺的最佳优化条件.结果表明,水浴加热过程对改性剂和粘结剂进行慢速搅拌,最佳转速为50r·min-1,时间为45min,烘干时间1h,温度(120±5)℃,纳米Fe2O3(65.8g·L-1)与未改性石英砂(RQS)的最佳投加比(体积质量比,下同)为C=0.23mL·g-1,改性剂环氧树脂(99%)溶液与RQS的最佳投加比为C1=0.035mL·g-1,纳米SiO2(10g·L-1)与RQS的最佳投加比为C2=0.17mL·g-1,在最优条件下制备的样品负载量和有机物吸附率均达到92%.投加过量时,有机物吸附率明显减小.与传统的低温碱性沉积法或高温煅烧制得的Nano-OCS相比,加入了粘结剂环氧树脂,用低温水浴固化的方法所制得的Nano-OCS,负载量提高了约8倍,脱附率降低70%以上.本法采用无添加剂的粘结剂,表面改性后不会对水体产生二次污染.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号