首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
安全科学   1篇
综合类   7篇
  2016年   3篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
以信阳市火车北站污水处理工程为例.介绍了以一体化氧化沟工艺为主的处理工艺及其主要构筑物如:泵井、平流沉砂池、氧化沟以及接触消毒池的结构特点和设计水力负荷条件等。针对火车站废水特有的含油污量高、可生化性差的特点.指出了其运行与调试过程中应注意的问题。  相似文献   
2.
水权制度是规范用水行为的基本制度。由于水利工程建设受诸多条件限制,即便在水资源比较丰富的地区,水利工程提供的可用水也往往是稀缺的,这就为水权制度的产生和发展提供了激励。因为这种内在需求,水权制度实际上成为一种普遍存在的用水制度。  相似文献   
3.
垃圾渗滤液生物处理系统BP人工神经网络模型   总被引:1,自引:1,他引:0  
垃圾渗滤液成分复杂,变化范围大.对其调试及长期持续良好运行存在较大困难。本文针对武汉市二妃山垃圾渗滤液的调试运行数据,利用人工神经网络原理,建立BP人工神经网络垃圾渗滤液生物处理模型来预测处理效果.确定最优反应条件。实验结果显示网络具有良好的收敛特性,模型具有工程实用价值。  相似文献   
4.
ANAMMOX颗粒污泥吸附氨氮特性及其影响因素   总被引:2,自引:0,他引:2  
为了解析ANAMMOX颗粒污泥对氨氮的吸附特性及机理,分别考察了不同初始氨氮浓度和污泥浓度下的ANAMMOX颗粒污泥吸附氨氮特性,以及温度、pH、盐度和金属阳离子对氨氮吸附的影响;并采用了吸附等温式、动力学和热力学对吸附过程进行解析.结果表明,ANAMMOX颗粒污泥对氨氮的吸附在20min左右基本达到吸附平衡,吸附容量随着氨氮初始浓度的增加而增加,随ANAMMOX颗粒污泥浓度的升高而减少.低温有利于ANAMMOX颗粒污泥对氨氮的吸附,其最佳pH为7.0.盐度和金属阳离子显著影响ANAMMOX颗粒污泥对氨氮的吸附,在NaCl浓度为5g/L时,吸附作用已不明显.在质量浓度相同的条件下,Fe3+对吸附作用抑制最强,Mg2+与Ca2+次之,而Cu2+相对最弱.ANAMMOX颗粒污泥吸附氨氮过程更符合Freundlich等温式,吸附过程符合准二级动力学模型,并且是由表层扩散和内部扩散共同作用的结果.热力学研究表明,该吸附过程是一个自发的放热过程.  相似文献   
5.
水资源市场化配置的适宜领域 水资源配置在控制水资源过度开发、规范用水秩序、提高用水效率方面具有重要作用。较早出现的水资源配置是由于水设施或水工程提供的可利用水资源即工程水稀缺带来的用水矛盾所催生的,明晰了用水户利用工程水的权利义务和秩序,解决了工程水配置问题。在我国古代灌区出现的灌溉制度,就属此类。  相似文献   
6.
为研究ANAMMOX(厌氧氨氧化)工艺处理晚期垃圾渗滤液过程中氮转化途径的变化及颗粒污泥特性,采用2套ANAMMOX-UASB生物膜反应器(1#系统和2#系统)分别处理晚期垃圾渗滤液和无机配水,考察两种水质条件下ANAMMOX系统的脱氮性能,并对稳定运行时期两个系统颗粒污泥中ANAMMOX菌活性、硝化活性、反硝化活性及其污泥理化特性进行对比. 结果表明:1#系统经过连续培养逐渐适应了晚期垃圾渗滤液,实现了ANAMMOX耦合异养反硝化高效脱氮;稳定期1#系统和2#系统中TN的平均去除率分别为86.66%和76.77%. 1#系统和2#系统的颗粒污泥均具有ANAMMOX活性、硝化活性和反硝化活性,1#系统中颗粒污泥ANAMMOX活性和硝化活性较2#系统略有降低,而反硝化活性则大有提高;两个系统中ANAMMOX过程对TN去除速率分别为0.286和0.301 g/(g·d). 1#系统中颗粒污泥呈红褐色,2#系统中颗粒污泥呈砖红色,两个系统中粒径>1.5~2.5 mm的颗粒污泥所占比例分别为66.10%和50.67%,基本处于传质作用最佳的区间.   相似文献   
7.
渗滤液短程硝化反硝化生物脱氮影响因素研究   总被引:2,自引:0,他引:2  
在适当的条件下,渗滤液也可发生典型的短程硝化反硝化反应;在试验中发现硝化反应并不是在曝气一开始就发生,而是在经过一段时间的吸附降解后才发生,同时实验结果显示发生短程硝化的最佳pH值为8.0~9.0,温度维持在25℃或25℃以上.  相似文献   
8.
采用连续流MBR反应器处理晚期垃圾渗滤液,考察其亚硝化性能;并探讨底物、产物和毒性物质对亚硝化性能的抑制及其动力学特性.结果表明,在进水NH4+-N浓度为(280±20) mg/L时,通过控制DO为0.5~1 mg/L,pH值为7.8~8.2和温度为(30±1)℃,成功启动MBR的亚硝化工艺,在第32d时, NO2--N积累率为84.27%;后逐步升高进水负荷,并提高DO至2~3 mg/L,逐渐实现MBR系统中以晚期垃圾渗滤液原液为进水的亚硝化,在第112d时,系统出水NO2--N浓度为889 mg/L, NO2--N积累率为97.23%.底物、产物和毒性物质的抑制实验表明,毒性物质对微生物的抑制作用强于底物和产物;当毒性物质浓度(以COD计)为1600.2 mg/L时,氨氧化速率下降了22.15%,而相应条件下若以FA为单因子抑制时,氨氧化速率下降了4.74%~6.49%,若以FNA为单因子抑制时,氨氧化速率相比下降了14.46%~15.86%.分别采用Haldane底物抑制模型、Aiba产物抑制模型以及修正后的毒性物质抑制模型对实验数据进行非线性拟合,相关系数R2分别为0.9821、0.9961和0.9924,并得到底物、产物和毒性物质的抑制动力学模型.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号