首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   3篇
综合类   3篇
基础理论   3篇
  2014年   3篇
  2008年   3篇
排序方式: 共有6条查询结果,搜索用时 13 毫秒
1
1.
亚热带土壤反硝化过程中NO-3-N对CH4排放的影响   总被引:2,自引:1,他引:1  
续勇波  蔡祖聪  雷宝坤 《环境科学》2008,29(12):3513-3519
研究了发育于不同成土母质和不同土地利用方式下的45个亚热带土壤样本,在反硝化严格厌氧培养条件下(密闭、淹水、充N2),加入KNO3的处理(加入N量为200 mg·kg-1)和不加KNO3的空白对照对CH4产生和排放的影响.结果表明,厌氧培养条件下无论加入KNO3与否,CH4的产生和排放首先取决于土壤有机碳总量水平及其有效性.对照土壤中花岗岩母质发育的土壤和KNO3处理土壤中稻田利用方式下的土壤CH4排放量最高.加入KNO3显著抑制了CH4的产生和排放,NO-3-N对CH4产生的抑制效应可能较N2O对CH4产生的抑制效应更大.加入KNO3处理中厌氧培养第1周内的NO-3-反硝化量和降低速率是决定CH4排放量的关键因素.不加KNO3的对照土壤中,73%的土样表现为 Fe2+的产生和CH4的排放之间呈指数关系增长,表明Fe3+和CO2的还原可同步进行.NO-3-N不仅显著抑制了CH4的产生和排放,也抑制了Fe3+的还原.  相似文献   
2.
亚热带土壤氮素反硝化过程中N2O的排放和还原   总被引:13,自引:0,他引:13  
将采集于江西鹰潭的45个发育于不同成土母质和不同利用方式的土壤样本,在密闭、淹水、充N2的严格厌氧条件下进行了28d的培养试验(30℃),在培育过程中,定期测定NO3--N(加入量为200mg·kg-1)含量和培养瓶上部空间N2O的含量变化.实验结果表明,N2O含量(N)随培养时间t的变化可用方程N=A×(1-exp(-k1 t))-B×exp(k2 t)拟合(A表示培养过程中N2O总排放量;B为常数;k1和k2分别为N2O排放速率常数和还原速率常数,拟合值和实测值之间回归方程的决定系数R2=0.84±0.11).不同土壤之间培养期间N2O总排放量(A)的变异可以用培养7d内被反硝化的NO3--N量和N2O排放率(A值与28d内被反硝化的NO3--N总量的百分比)进行解释(R2=0.829,p<0.01).被反硝化的NO3--N量则主要受土壤有机碳含量或有机氮矿化量控制,N2O排放率则随k2的增大而呈指数下降(p<0.01).由此可见,在该实验条件下,还原N2O能力强的土壤,在相同量的NO3--N被反硝化的情形下,排放的N2O可能较少.但影响k2值的主要因素还有待进一步研究.  相似文献   
3.
研究了发育于不同成土母质和不同土地利用方式下的45个亚热带土壤样本,在反硝化严格厌氧培养条件下(密闭、淹水、充N2),加入KNO3的处理(加入N量为200 mg·kg-1)和不加KNO3的空白对照对CH4产生和排放的影响.结果表明,厌氧培养条件下无论加入KNO3与否,CH4的产生和排放首先取决于土壤有机碳总量水平及其有效性.对照土壤中花岗岩母质发育的土壤和KNO3处理土壤中稻田利用方式下的土壤CH4排放量最高.加入KNO3显著抑制了CH4的产生和排放,NO3--N对CH4,产生的抑制效应可能较N2O对CH4产生的抑制效应更大.加入KNO3处理中厌氧培养第1周内的NO3-反硝化量和降低速率是决定CH4排放量的关键因素.不加KNO3的对照土壤中,73%的土样表现为Fe2+的产生和CH4的排放之间呈指数关系增长,表明Fe3和CO2的还原可同步进行.NO3--N不仅显著抑制了CH4的产生和排放,也抑制了Fe3+的还原.  相似文献   
4.
亚热带可变电荷土壤化学性质与温带地区恒电荷土壤有诸多不同特点,使得反硝化具有一些与温带土壤不同的特性,进一步深入研究亚热带土壤反硝化气体产物的组成比例、主要影响因素和机理,将有助于加深对亚热带环境条件下土壤N循环的理解和认识,以及为正确评价亚热带土壤反硝化环境效应提高科学依据。因此,就亚热带土壤厌氧培养条件下反硝化的气态产物问题进行了探讨。土样采自江西典型亚热带红壤地区,在加入K15NO3(10 atom%15N,加入N量为200 mg·kg-1)条件下进行了7 d 30℃、密闭、淹水、充N2的严格厌氧培养试验。试验结果表明:随培养时间推移,15N回收率逐渐下降,土壤总残留的15NO3-质量分数和回收率之间存在显著正相关关系(p〈0.001),表明反硝化作用越弱的土样回收率越高。总气态氮损失率的估计值和实测值都随培养时间延长呈上升趋势,两者之间存在显著正相关性(p〈0.001)。根据稳定性同位素15N示踪试验结果初步估计,厌氧培养7 d内反硝化作用产生的气态产物中N2O占总气态氮损失的17.1%,N2占8.7%,估计NO可能是主要的反硝化产物之一。以未能回收的氮计算,NO约占总气态氮损失的67.5%~78.6%,平均为74.1%。反硝化气态产物中NO和N2O总量占总气态氮损失的91.3%。NO、N2O和N2分别占总施入氮量的18.6%、4.4%、2.0%。因此,亚热带土壤氮素反硝化过程中主要气态产物可能为NO和N2O,而非对环境无害的N2。  相似文献   
5.
长期定位施肥对土壤的碳氮共济效应情景分析   总被引:1,自引:0,他引:1  
碳氮共济的概念体现了二者间共同依赖、共同转化、共同协作的关系,将土壤碳和氮均作为改善土壤质量的主动因素,这一概念有别于其它碳氮关系论述时只考虑元素间的被动耦合机制。土壤碳和氮之间存在着相互依存和相互制约的关系,土壤碳、氮在数量上和结构上需要处于什么样的状态才能够实现土壤碳氮的共济关系,土壤碳对氮有多大的承载能力等是值得探讨的问题。文章利用我国长期定位试验中的土壤碳氮数据,分析土壤的碳氮质量分数变化特征、施肥对土壤w(C)/w(N)比的影响、土壤碳对氮素的储存能力、碳氮共济关系及其情景分析,以便为充分挖掘土壤碳氮的生物学潜力、提高土壤生产力、改善环境和实现碳氮的良性循环提供依据。通过检索文献数据库,选取了69篇记载有土壤碳氮数据的有代表性的文章,获得土壤碳氮数据1782项。分析结果表明:土壤碳氮关系可以用yC=7.66xN+1.8162(r2=0.734**, n=737)表达,土壤平均全氮质量分数为1.17 g·kg-1,变化范围在0.08~3.52 g·kg-1之间,土壤平均有机碳质量分数为10.8 g·kg-1,变化范围在0.64~32.08 g·kg-1之间;土壤w(C)/w(N)比集中在7.6~10.7之间,占总样本的80%左右,有机无机配施有利于提高土壤的w(C)/w(N)比,单施化肥,特别是偏施某一种化肥时,将显著降低土壤的w(C)/w(N)比;在土壤氮素储存率为N 20 kg·hm-2·a-1,目标w(C)/w(N)比为9、10、11的情景下,目前已经处于碳饱和的土壤分别占:52.7%、72.1%、87.5%;储存率为N 50 kg·hm-2·a-1的情景下分别占:58.2%、78.2%、91.4%;储存率为N 100 kg·hm-2·a-1的情景下分别占68.7%、87.6%、95.8%。土壤碳氮质量分数变异很大,总体碳氮比稳定在7.66左右,偏施化肥将显著降低土壤的w(C)/w(N)比,较低的土壤w(C)/w(N)比和较高的氮素储  相似文献   
6.
热带亚热带土壤氮素反硝化研究进展   总被引:4,自引:0,他引:4  
热带亚热带独特的土壤性质可能使得反硝化机理有别于温带土壤.文章综述了热带亚热带地区土壤氮素生物反硝化的研究进展,试图更好地了解该地区土壤反硝化在全球氮(N)循环以及在全球环境变化和生态系统响应互作中的角色.热带亚热带土壤反硝化强度普遍较温带地区弱,且随着土地利用方式和耕作管理措施的不同而呈现较大的时空变异性.影响土壤水分状况和土壤碳(C)、N 转化特性和速率的因素即为区域和农田尺度上的反硝化影响因素.湿润型热带亚热带土壤由于含有丰富的氧化物而致使土壤氧化还原势较高,这也是导致该地区土壤反硝化势较温带地区较低的关键土壤因素之-.然而土壤pH 值不是该地区土壤反硝化势较低的主要限制因素.有机C 矿化过程较土壤全氮含量和土壤C/N 比在决定湿润型亚热带土壤反硝化势方面更为重要.愈来愈多的证据表明热带亚热带土壤反硝化的生态环境效应不同于温带地区,热带亚热带地区土壤反硝化对全球变暖的贡献应综合考虑其对其它温室气体(如CH4,CO2)排放和氮沉降的影响.热带亚热带土壤生态系统具有-些防止土壤氮素反硝化损失的机制和保氮策略.然而,热带亚热带生态系统对全球变化的响应机制及其生物地球化学调控机制仍然不清楚,这些研究对于反硝化和其它同时发生的氮转化过程模型的精确构建至关重要.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号