首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   5篇
综合类   6篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
唐山大气颗粒物中水溶性无机盐的观测研究   总被引:9,自引:9,他引:0  
为认知唐山大气颗粒物中典型二次污染化学成分水溶性无机盐的浓度水平、季节变化和粒径分布特征,于2010年9月~2011年8月使用惯性撞击式分级采样器对唐山大气颗粒物进行了分级采样,并用离子色谱分析了其中水溶性无机盐含量.结果表明,PM9(可视为可吸入颗粒物)和PM2.1(细粒子)中以3种水溶性无机盐SO24-、NO3-和NH4+为主,三者之和分别占PM9和PM2.1中水溶性无机盐总浓度的68%和77%;PM9和PM2.1中3种盐的浓度和在春、夏、秋、冬这4个季节分别为35.0、84.7、67.3、61.6μg.m-3和23.2、64.8、52.7、49.6μg.m-3,颗粒物中3种盐在细粒子中的赋存比例年均值分别为70%、75%和94%,夏季赋存于粗粒子中的比例显著高于其它季节.Ca2+和Mg2+全年均呈粗模态单峰分布.唐山大气颗粒物污染严重,控制燃煤、机动车尾气和生物质燃烧直排颗粒物的同时,要重点加强对气态污染物排放的控制,同时要控制地面扬尘和建筑灰尘.全面控制人为污染排放源,同时加强绿化和地面硬化、封闭式管理建筑工地,才有可能抑制住唐山市目前严重的大气污染.  相似文献   
2.
为研究我国旅游城市海南省三亚市大气颗粒物浓度水平及其化学成分,于2012年6月~2014年5月,使用惯性撞击式分级采样器采集大气颗粒物样品,并利用离子色谱法分析了其中的水溶性无机离子浓度及粒径分布.结果表明,PM_(2.1)和PM_(2.1~9)中总水溶性无机离子浓度平均值分别为(8.91±7.27)μg·m~(-3)和(11.34±9.37)μg·m~(-3).PM_(2.1)中SO_4~(2-)和NH_4~+占总水溶性无机离子的质量分数比较高,二者总和达到72.2%;PM_(2.1~9)中Cl-、Ca~(2+)和Na+占比较高,三者总和为67.6%.PM_(2.1)中总水溶性无机离子浓度在冬季最高,春秋季节次之,夏季浓度最低,分别为(14.58±8.88)、(9.33±7.72)、(8.72±4.42)和(3.82±1.59)μg·m~(-3);PM_(2.1~9)中总水溶性无机离子浓度夏季最高(17.14±16.00)μg·m~(-3),冬季次之(10.59±3.80)μg·m~(-3),春季和秋季变化差异不大,分别为(9.41±3.63)μg·m~(-3)和(8.21±3.24)μg·m~(-3).SO_4~(2-)和NH_4~+呈细粒径段为主的双模态分布,春季、夏季和秋季细粒径段峰值出现在0.43~0.65μm粒径段,而冬季则出现在0.65~1.1μm粒径段,细粒径段峰值出现由凝结模态向液滴模态转移的现象;NO~(-3)、Na+、Cl-、Ca~(2+)和Mg~(2+)呈粗粒径单峰分布,峰值出现在4.7~9μm粒径段;K+为双模态分布,细、粗粒径段峰值分别出现在0.43~0.65μm和4.7~5.8μm.三亚作为我国少数PM2.5年均值达标城市,水溶性无机离子来源主要为二次源、海盐和土壤尘及降尘.  相似文献   
3.
为研究太原大气颗粒物中水溶性无机离子的质量浓度水平、季节变化和粒径分布特征,于2012年6月~2014年5月使用惯性撞击式分级采样器采集大气颗粒物样品,并用离子色谱分析了其中的水溶性无机离子组成.结果表明,PM_(1.1)、PM_(2.1)和PM_9中总水溶性无机离子浓度平均值分别为(15.39±9.91)、(21.10±15.49)和(36.34±18.51)μg·m-3.PM1.1和PM2.1中,二次离子(SO_4~(2-)、NO_3~-和NH_4~+)占总水溶性无机离子质量分数最高;PM9中SO_4~(2-)和Ca~(2+)占比较高.各粒径段中SO_4~(2-)和NH+4季节变化特征相似,均为冬夏季节高、春秋季节低;NO_3~-、K+和Cl-季节变化特征一致:冬季秋季春季夏季;Ca~(2+)和Mg~(2+)季节变化特征一致:春季冬季秋季夏季.SO_4~(2-)和NH+4为细模态单峰分布,春秋季节在0.43~0.65μm处出现峰值,而夏季出现在0.65~1.1μm处,细粒径段峰值出现由凝结模态向液滴模态转移的现象.NO_3~-为双模态离子,冬季在0.43~2.1μm出现明显细粒径段峰值,夏季在4.7~5.8μm出现明显粗模态峰值.K~+、Na~+和Cl~-为双模态离子,分别在0.43~1.1和4.7~5.8μm出现峰值;Ca~(2+)、Mg~(2+)和F-呈粗模态单峰分布,在4.7~5.8μm出现峰值.主成分分析结果显示,水溶性无机离子来源主要是二次源、燃煤、工业源、生物质燃烧和土壤尘或降尘.  相似文献   
4.
阜康大气气溶胶中水溶性无机离子粒径分布特征研究   总被引:2,自引:1,他引:1  
为了解阜康大气气溶胶中水溶性无机离子的浓度水平、来源以及粒径分布,本研究于2011年2月~2012年2月利用8级惯性撞击式分级采样器采集了阜康大气气溶胶样品,使用离子色谱测定了其中水溶性无机离子含量.分析比较了非采暖期和采暖期主要离子的变化趋势、浓度水平、构成、来源以及粒径分布,在此基础上选取特殊采样日分析了重污染、秸秆燃烧以及春耕期的离子组成以及粒径分布的差异.结果表明,阜康细粒子、粗粒子中总水溶性无机离子(TWSI)在非采暖期和采暖期的浓度分别为11.17、12.68μg·m-3和35.98、22.22μg·m-3;非采暖期的SO2-4主要来自盐碱土扬尘,NO-3和NH+4主要来自农田土壤扬尘,而采暖期的SO2-4、NO-3和NH+4主要来自煤炭等化石燃料燃烧.8种离子在非采暖期和采暖期均呈现双峰分布,相对于非采暖期,采暖期的SO2-4、NO-3和NH+4在细粒径段的峰值发生了粒径增长,SO2-4和NH+4在粗粒径段的峰值出现在3.3~4.7μm处.重污染期间二次污染严重,离子主要分布在1.1~2.1μm处;秸秆燃烧期受生物质燃烧影响大,离子主要分布在<0.65μm粒径段;春耕期土壤扬尘较多,离子主要分布在>3.3μm粒径段.  相似文献   
5.
沈阳大气气溶胶中水溶性无机离子的观测研究   总被引:1,自引:1,他引:0  
苗红妍  温天雪  王璐  徐慧 《环境科学》2016,37(6):2017-2024
为了解沈阳大气气溶胶中水溶性无机离子浓度水平和季节变化,探究污染期与清洁期气溶胶特性的差异,本研究采集了2012年6月至2013年5月沈阳大气气溶胶分级样品,测定了其中水溶性无机离子浓度.结果表明,沈阳细粒子和粗粒子中水溶性无机离子的浓度总和分别为22.30μg·m~(-3)和14.29μg·m~(-3),其中含量最高的离子分别是SO~(2-)_4和Ca~(2+).细粒子中NH~+_4主要以(NH_4)_2SO_4和NH_4NO_3的形式存在,SO~(2-)_4/NO~-_3质量比为2.28.细粒子中水溶性无机离子的浓度总和(total water soluble inorganic ions,TWSI)季节变化明显,冬春季浓度高,夏秋季浓度低,化石燃料燃烧是细粒子中二次离子冬季出现高值的主要原因;粗粒子中TWSI季节变化不明显,秋季略高,冬季略低,风沙扬尘使秋季粗粒子中的Ca~(2+)出现了显著高值.SO~(2-)_4、NO~-_3、NH~+_4这3种离子浓度总和在冬季清洁期细粒子中比例为80%,污染期则上升为94%;清洁期的离子在细粒径段的峰值主要出现在0.43~0.65μm粒径处,而污染期的离子在细粒径段的峰值主要出现在0.43~2.1μm处,污染期SO~(2-)_4、NO~-_3、NH~+_4这3种离子在细粒径段的峰值由0.43~0.65μm处转移至1.1~2.1μm处,出现了由凝结模态向液滴模态转移的现象;清洁期气团主要生成在贝加尔湖附近,经高空远距离传输至采样点;而污染期气团主要生成并经过我国东北工业区,经低空短距离输送至采样点.  相似文献   
6.
保定大气颗粒物中水溶性无机离子质量浓度及粒径分布   总被引:8,自引:0,他引:8  
为研究保定市大气颗粒物中水溶性无机离子的质量浓度水平、季节变化和粒径分布特征,于2010年8月—2011年8月利用Andersen分级采样器采集大气颗粒物样品,并用离子色谱分析其中的离子组成. 结果表明,细粒子(PM2.1)中主要水溶性无机离子为SO42-、NO3-和NH4+,三者质量浓度平均值分别为23.18、21.99和11.44μg/m3;粗粒子(PM>2.1)中主要水溶性无机离子为NO3-、Ca2+和SO42-,三者质量浓度平均值分别为10.60、10.39和10.14μg/m3. 细粒子中ρ(SO42-)、ρ(NO3-)、ρ(NH4+)、ρ(Cl-)和ρ(K+)的季节性变化相似,均为冬季>秋季>夏季>春季;粗粒子中ρ(NH4+)、ρ(K+)和ρ(NO3-)呈现出与细粒子不同的季节性变化趋势,ρ(NH4+)和ρ(K+)均为冬季>夏季>秋季>春季,而ρ(NO3-)则为夏季>秋季>冬季>春季. 粗、细粒子中ρ(Ca2+)和 ρ(Mg2+)的季节性变化特征相似,均为冬季最高、夏季最低. ρ(SO42-)、ρ(NO3-)、ρ(Na+)和ρ(K+)均呈双峰分布,分别在>0.43~1.1μm和>4.7~5.8μm出现峰值; ρ(NH4+)和ρ(Cl-)呈细模态单峰分布,在>0.43~1.1μm出现峰值; ρ(Mg2+)和 ρ(Ca2+)呈粗模态单峰分布,在>4.7~5.8μm出现峰值. 二次源和生物质燃烧是细粒子的主要来源,扬尘对粗粒子影响较大.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号