首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
综合类   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
为有效评估纳米乳化油原位处理地下水硝酸盐过程中,产气及微生物增殖代谢对含水层多孔介质的堵塞作用,以纳米乳化油为碳源,采用市售反硝化菌剂接种微生物进行硝酸盐降解批实验研究,探讨产气及微生物增殖代谢的动态变化及特征,并基于Kozeny-Carman(K-C)方程、Clement、Pham及Kozeny Grain(KG)模型,对假定含水层一维流模拟柱,预估产气及微生物增殖代谢造成的渗透性损失,识别堵塞过程及主导因素.结果显示,反硝化菌降解效果良好,硝氮总去除率达90.23%.CO_2及N_2为主要产气成分,降解1 mg硝氮对应的平均CO_2产气量为0.71 mL,平均N_2产气量为0.14 mL;微生物代谢产物胞外聚合物以蛋白质及多糖为主,降解1 mg硝氮平均蛋白产量为0.64 mg,平均多糖产量为0.16 mg.在含水层不与外界交换气体的假设前提下,K-C方程预测显示产气可在2个周期内造成渗透性完全损失,Clement、Pham及KG模型评估的微生物增殖代谢造成中、细砂渗透性损失分别为10.87%~31.10%、12.77%~48.32%,分析认为初期细胞生物量是导致渗透性骤降的关键因素,后期为细胞生物量和胞外聚合物共同作用.此外,封闭体系中产气是堵塞的主导因素,随着含水层开启程度增加,产气的贡献占比会下降,微生物的贡献占比提高.因此,对于相对封闭的含水层系统,探索增强其开放状况是缓解堵塞的有效途径之一.  相似文献   
2.
为缓解地下水污染原位生物修复过程中生物膜形成造成的多孔介质渗透性损失,采用纳米乳化油为碳源,市售反硝化细菌为菌种,开展静态批实验,模拟地下水硝酸盐氮反硝化修复过程;选取蛋白酶、多糖酶以及群体感应抑制剂香草醛为生物膜抑制剂,分析不同反应体系硝酸盐氮的降解情况,探究3种添加物的不同组合方式对于反硝化细菌生物膜的抑制作用.结果显示,多糖酶、蛋白酶以及香草醛的投加能够有效促进硝酸盐氮的降解和亚硝酸盐氮的还原.4个实验组别的NO3-N降解速率为0.28~0.30 mg·L-1·h-1,约为空白组的2.55~2.73倍,且NO2-N无明显积累.群体感应抑制剂香草醛与蛋白酶的结合对以假单细胞菌属为主的反硝化细菌生物膜的抑制效果最好.定量评估结果表明,生物膜去除效果依次为香草醛和蛋白酶的混合物(81.3%)>蛋白酶和多糖酶的混合物(68.6%)>蛋白酶(54.1%)>多糖酶(49.1%),单位质量多糖酶、蛋白酶和香草醛对于胞外聚合物的去除量分别为30.07、65.34 mg·mL-1  相似文献   
3.
抗生素对反硝化过程有不同程度的影响,为快速了解喹诺酮类抗生素对水土环境中反硝化可能产生的影响,选取5种典型的喹诺酮类药物:左氧氟沙星(OFL)、盐酸洛美沙星(LOM)、环丙沙星(CIP)、恩诺沙星(ENR)、诺氟沙星(NOR)对反硝化细菌进行单一及联合药敏试验,探究抗生素单独使用和联用时对反硝化细菌的作用效果.本文首先通过高通量测序确定选用的菌种与水土环境中反硝化菌的优势菌群具有一致性,进而从定性和定量的角度出发,分别采用纸片扩散法和微量肉汤稀释法进行实验.采用微量肉汤稀释法得到了OFL、LOM、CIP、ENR、NOR的最小抑菌浓度(Minimum Inhibitory Concentration,MIC)分别为0.25、0.5、0.125、0.0625、1 μg·mL-1,反硝化菌对5种抗生素的敏感性大小为:ENR>CIP>OFL>LOM>NOR.根据MIC计算抑菌浓度指数(Fractional Inhibitory Concentration Index,FIC)得到的联合抑菌效应显示:OFL与NOR表现为无关作用,与CIP、LOM、ENR均表现为拮抗作用;NOR与CIP、LOM表现为累加作用,与ENR表现为无关作用;CIP与LOM表现为无关作用,与ENR表现为拮抗作用;LOM与ENR表现为无关作用.从喹诺酮类抗生素的抑菌机理推测:联用时产生的不同作用效果可能是对反硝化菌作用点或作用环节差异引起的.水土环境中复合抗生素污染对反硝化作用的影响将因复合抗生素的种类差异变得更为复杂,简便有效的联合药敏试验得出的结果可为水土环境中复合抗生素污染对反硝化影响的快速判定提供一定的参考依据.  相似文献   
4.
为探寻纳米乳化油原位修复地下水硝酸盐氮污染过程中微生物堵塞的形成原因,本研究采用市售的反硝化细菌接种微生物,以纳米乳化油为碳源,中砂为介质,分别建立2组反应器进行模拟实验,分析不同反应器中硝氮的降解情况,同时采用MiSeq高通量测序技术表征不同反应器的微生物菌落结构和多样性.结果表明,纳米乳化油作为碳源具有良好的降解效果,添加纳米乳化油的反应器,反应周期内硝酸盐氮的总降解效率为91.76%,而对照反应器的降解效率仅为38.11%.在硝酸盐氮降解过程中,均存在以蛋白质和多糖为主的代谢产物胞外聚合物增加的趋势,且蛋白质的含量均显著高于多糖.反应结束时,实验组和对照组的胞外聚合物累积量分别为384.49 mg和279.45 mg,单位质量硝氮降解产生的胞外聚合物分别为1.79 mg·mg-1和39.43 mg·mg-1.高通量测序结果显示,添加纳米乳化油会引起细菌浓度的升高及细菌群落多样性的降低,但具有反硝化作用的微生物相对丰度增加.实验组和对照组反应器中共同的优势菌门为Proteobacteria、Bacteroidetes和Actinobacteria,相对丰度分别为73.35%、6.77%、8.49%及33.46%、47.15%、7.15%,纳米乳化油的添加会刺激Proteobacteria等具有较高反硝化作用的微生物增多,因此,以纳米乳化油作为碳源能够有效提高硝酸盐氮的降解效率,但与此同时纳米乳化油也会刺激微生物的生长及影响微生物群落演变.Sphingamonas、RhodopseudomonasMicrobacterium菌属相对丰度增加,会引起粘性代谢产物增多,造成多孔介质渗透性下降和生物堵塞.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号