首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
  国内免费   3篇
废物处理   27篇
环保管理   5篇
综合类   9篇
基础理论   10篇
污染及防治   7篇
评价与监测   14篇
社会与环境   3篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有75条查询结果,搜索用时 46 毫秒
1.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   
2.
Poly(butylene succinate) (PBS) was melt blended with glycerol based polyesters (PGS) synthesized from pure and technical glycerol aiming to improve the impact strength of PBS. It was found that after addition of 30 wt% PGS to PBS its impact strength was significantly increased by 344% (from 31.9 to 110 J/m) and its elongation at break was maintained at 220%. Infrared spectra of the blends showed the presence of hydroxyl groups from the PGS phase suggesting that hydrogen bonding between the phases could be responsible for a good stress transfer and an efficient toughening in the PBS/PGS blends. Scanning electron microscopy imaging showed a good dispersion of PGS phase into PBS with a PGS particle size of 10 μm and less and no agglomeration. Addition of PGS to PBS was shown to be an effective strategy for improvement of PBS impact resistance without serious detrimental effects on its thermal and rheological properties.  相似文献   
3.
A study was carried out in the coastal waters of Kalpakkam, southeast coast of India, to find out the seasonal variation in dinoflagellate community structure. Samples were collected for a period of 4 years during 2006–2010. During the study 69 species of dinoflagellates were encountered among which Ceratium furca and Prorocentrum micans were most common during all the seasons. Genus Ceratium was found to be the most diverse one with 23 species which was followed by genus Protoperidinium with 16 species. Of 69 species, 27 species were considered as dominant based on their abundance during pre-monsoon (PRM), monsoon (MON) and post-monsoon (POM) periods. Relatively high density and diversity of dinoflagellates were encountered during the PRM period as compared to the MON and POM periods. Abundance pattern of dinoflagellates for three seasons showed the following trend: PRM?>?POM?>?MON. Salinity showed a positive correlation with dinoflagellate community showing its importance in dinoflagellate growth and sustenance. Ammonia and phosphate developed negative correlation with dinoflagellate density indicating the utilization of these nutrients by the dinoflagellate community. The presence of three dinoflagellate associations, broadly representing the three seasons experienced at this location, was evident from the cluster analysis. The study revealed presence of 19 relatively abundant toxic/red tide forming dinoflagellate species in the coastal waters of Kalpakkam.  相似文献   
4.
Biogas technology, besides supplying energy and manure, provides an excellent opportunity for mitigation of greenhouse gas (GHG) emission and reducing global warming through substituting firewood for cooking, kerosene for lighting and cooking and chemical fertilizers. A study was undertaken to calculate (1) global warming mitigation potential (GMP) and thereby earning carbon credit of a family size biogas plant in India, (2) GMP of the existing and target biogas plants in the country and (3) atmospheric pollution reduction by a family size biogas plant. The GMP of a family size biogas plant was 9.7 t CO(2) equiv. year( - 1) and with the current price of US $10 t( - 1) CO(2) equiv., carbon credit of US $97 year( - 1) could be earned from such reduction in greenhouse gas emission under the clean development mechanism (CDM). A family size biogas plant substitutes 316 L of kerosene, 5,535 kg firewood and 4,400 kg cattle dung cake as fuels which will reduce emissions of NOx, SO(2), CO and volatile organic compounds to the atmosphere by 16.4, 11.3, 987.0 and 69.7 kg year( - 1), respectively. Presently 3.83 million biogas plants are operating in the country, which can mitigate global warming by 37 Mt CO(2) equiv. year( - 1). Government of India has a target of installing 12.34 million biogas plants by 2010. This target has a GMP of 120 Mt CO(2) equiv. year( - 1) and US $1,197 million as carbon credit under the CDM. However, if all the collectible cattle dung (225 Mt) produced in the country is used, 51.2 million family size biogas plants can be supported which will have a GMP of 496 Mt of CO(2) equiv. year( - 1) and can earn US $4,968 million as carbon credit. The reduction in global warming should encourage policy makers to promote biogas technology to combat climate change and integration of carbon revenues will help the farmers to develop biogas as a profitable activity.  相似文献   
5.
本文描述中国、印度、菲律宾和斯里兰卡能源密集和污染型工业中可以引进的一些技术变革.当选择一种新的高能效和环境无害的工业技术时需要考虑的因素中包括现行技术的状态、前期费用、运行费用、设备效率、企业内部可供利用的技能水平.为了确认一种新技术是经济上可行的,也需要考虑许多外部因素:合理能源定价的存在,是否有适用的环境法规和激励机制到位,总体金融环境,经济体系的透明度等.  相似文献   
6.
A rapid spectrophotometric determination of persulfate anion in ISCO   总被引:10,自引:0,他引:10  
Due to a gradual increase in the use of persulfate as an in situ chemical oxidation (ISCO) oxidant, a simple measurement of persulfate concentration is desirable to analyze persulfate distribution at designated time intervals on/off a site. Such a distribution helps evaluate efficacy of ISCO treatment at a site. This work proposes a spectrophotometric determination of persulfate based on modification of the iodometric titration method. The analysis of absorption spectra of a yellow color solution resulting from the reaction of persulfate and iodide in the presence of sodium bicarbonate reveals an absorbance at 352 nm, without significant interferences from the reagent matrix. The calibration graph was linear in the range of persulfate solution concentration of 0-70 mM at 352 nm. The proposed method is validated by the iodometric titration method. The solution pH was at near neutral and the presence of iron activator does not interfere with the absorption measurement. Also, analysis of persulfate in a groundwater sample using the proposed method indicates a good agreement with measurements by the titration method. This proposed spectrophotometric quantification of persulfate provides a simple and rapid method for evaluation of ISCO effectiveness at a remediation site.  相似文献   
7.
8.
Biocomposites were made by a novel high volume processing technique named biocomposite sheet molding compound panel (BCSMCP) manufacturing process. This process design was inspired by the commercial glass fiber–polyester resin composite fabrication method called sheet molding compounding (SMC). This process yields continuous production of biocomposites on a large scale, and thus can be easily adopted in industries. A unique fiber dispersion method, which enabled uniform distribution of natural fibers, was used in this process. Consistency of the process was tested by evaluating the repeatability of the resultant materials mechanical properties. The low cost biocomposites produced as a result of the processing will be used for various panel applications such as housing and transportation. The molded samples were tested for various mechanical and thermal properties, in accordance with ASTM procedures. The biocomposites were made with various natural fibers including, big blue stem grass, jute, and industrial hemp. By combining different natural fibers in varying mass fractions, hybrid biocomposites were made using this process. Grass fiber reinforced polyester biocomposites processed by the SMC line showed very promising results.  相似文献   
9.
Increased environmental awareness and interest in long-term sustainability of material resources has motivated considerable advancements in composite materials made from natural fibers and resins, or biocomposites. In spite of these developments the lower stiffness and strength of biocomposites has limited their applications to non-load-bearing components. This paper presents an overview of a study aimed at showing that the shortcomings of biocomposites can be overcome through hybrid material designs and efficient structural configurations to make them suitable for load bearing structural components. Hybrid blends of natural and synthetic fibers can significantly improve the characteristics of biocomposites with minimal cost and environmental impact, and hierarchical cellular designs can maximize material efficiency in structural components. Periodic and hierarchical cellular plate designs made from natural fibers and unsaturated polyester resin were evaluated experimentally and analytically. Stiffness, strength, and dimensional stability of all-biocomposite and hybrid natural–synthetic material systems were evaluated through material tests while structural performance of cellular plate designs was assessed through flexural tests on laboratory-scale samples. The experimental results were correlated with analytical models for short-fiber composites and cellular structures. The results showed that biocomposites have adequate short-term performance and that they can efficiently compete with housing panels made from conventional structural materials.  相似文献   
10.
Natural fibers are limited in their use as reinforcement to commodity polymers. They cannot be used to reinforce engineering polymers due to their low thermal stability at high processing temperatures. This study presents an approach to successfully reinforce polyamides using a derivative of natural fibers as reinforcement without the effects of thermal degradation during melt processing. Biocarbon from miscanthus fibers was used to reinforce polyamide 6 up to 40 wt%. At 40 wt% filler content, the tensile and flexural strengths increased by 19.6 and 47% respectively in comparison to the neat polyamide. The moduli were also increased by 31.5 and 63.7% respectively. A maximum increase in impact strength of 43.7% was achieved at 20 wt% biocarbon loading. The morphology of the tensile fractured samples showed stretched polyamide ligaments attached to the biocarbon particles, indicating the presence of interaction between filler and matrix. Interestingly, more bonded interfaces were observed between the polyamide and biocarbon particles with increasing biocarbon content possibly stemming from increased biocarbon surfaces with functional groups. These composites show great potential to substitute in part or whole, some particulate filled polyamides currently used in the automotive industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号