首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
综合类   3篇
基础理论   2篇
污染及防治   4篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有9条查询结果,搜索用时 390 毫秒
1
1.
2.
The largest areas of acid sulphate (AS) soils in Europe are located in Finland, where 67,000–130,000 ha of AS soils are in agricultural use. In addition to their acidifying effects on waters, AS soils might be a significant source of greenhouse gases. In this pilot research, carbon and nitrogen content and microbial activity were studied in an AS and a non-AS soil. Large carbon and nitrogen stocks (110 Mg Corg ha?1 and 15 Mg Ntot ha?1) as well as high substrate induced respiration (33 μg CO2–C g?1h?1) were found in the C horizons of the AS soil but not in the non-AS soil. High microbial activity in these horizons of the AS soil was further confirmed by the measurement of dehydrogenase activity, basal respiration, the numbers of culturable bacterial cells, and the ratio of culturable to total numbers of cells. Still, the denitrifying enzyme activity was very low in the anaerobic horizons of the AS soil, indicating the prevalence of microbes other than denitrifiers. We suspect that the microbial community originated with the genesis of AS soil and has been supported by the large stocks of accumulated carbon and mineral nitrogen in the C horizons. If these permanently water-saturated subsoils are exposed to oxygen and their microbial activity consequently increases, large carbon and nitrogen stocks are likely to be mobilised, resulting in increased emission of greenhouse gases. Additional studies of boreal AS soils are needed to assess their potential contribution to increases in greenhouse gas fluxes at the local, regional, and global scales.  相似文献   
3.
Total mercury concentrations were determined in the gonadal tissues of 15 female and 10 male European perch (Perca fluviatilis) from one location of the stream “Jevanský potok” located about 30 km from Prague (Czech Republic). Tissue samples were frozen at ?26 °C in polypropylene containers until further processing, which was carried out using an Advance Mercury Analyser (single purpose atomic absorption spectrometer). Mercury concentrations were present in all analysed gonad samples, and ranged from 2.3 to 12.7 μg/kg wet weight. However, we determined a mean Hg concentration (9.45 μg/kg) in male gonads that was 2.4 times greater than that of female gonads (3.9 μg/kg). This is an important finding when taking into account fish sex in environmental pollution monitoring (especially for mercury contamination).  相似文献   
4.
5.
Cattle overwintering areas common in central Europe may represent significant point sources of the important greenhouse gases, nitrous oxide (N2O) and carbon dioxide (CO2). A 2-year field study was carried out in order to estimate the emissions of N2O and CO2 from soil in a cattle overwintering area located in the southwest of the Czech Republic. The measurements were performed at three sampling locations along a gradient of animal impact (severe, moderate, slight) to test the hypothesis that emissions of CO2 and N2O are positively related to the degree of impact. In addition to CO2 and N2O fluxes determined by using non-vented manual closed chambers, soil mineral nitrogen (NH4+ and NO3), pH and temperature were determined to assess their regulatory role and impact on gas fluxes. The overwintering area was about 4 ha and it had been used for overwintering of about 90 cows since 1995. Deposition of animal excreta resulted in a significant accumulation of nitrogen in the soil during winter, but most of the N2O was emitted during a few short periods in spring and/or in late autumn. Maximum N2O fluxes of up to 2.5 mg N2O-N m−2 h−1 were recorded at the most impacted location near the animal house, where the highest concentrations of soil mineral nitrogen also occurred. The emissions of CO2 showed a completely different pattern to those of N2O, being correlated with soil temperature; the highest emissions thus occurred in June–July, while very low fluxes were found in winter. Emission values ranged from about 0 to 700 mg C-CO2 m−2 h−1. Furthermore, the effect of animal impact on CO2 emissions was opposite to that on N2O fluxes, as the highest CO2 fluxes were mostly recorded at the least impacted location, where respiration of plants most likely increased overall CO2 production. The results show that cattle overwintering areas are important sources of greenhouse gases, including N2O and CO2. Fluxes of these two gases are, however, differently distributed over the year, which also suggests that they are controlled by different environmental and soil factors.  相似文献   
6.
Bioaccumulation of cadmium, chromium, copper, manganese, nickel, lead and zinc in small terrestrial rodents – voles and their cestode parasite Paranoplocephala dentata was studied. Contents of Pb, Mn, Ni and Zn in the parasite were found to be higher than in the kidney and liver of the parasitized animals. Lead level in the cestode was 37 fold higher than in the liver of the infected rodents. Bioaccumulation factors of zinc, nickel and manganese in the cestode are mostly in the range from 2 to 4.5. Considering the different contents of manganese and zinc in livers of non-parasitized and parasitized rodents, kidney tissue was found to be more reliable than liver as an indicator of environmental pollution by manganese and zinc; the kidneys of parasitized animals showed no significant change in the concentrations of those elements that are accumulated in the cestode.  相似文献   
7.

Goal, Scope and Background

The aim of this work is to show the ability of several fungal species, isolated from arsenic polluted soils, to biosorb and volatilize arsenic from a liquid medium under laboratory conditions. Mechanisms of biosorption and biovolatilization play an important role in the biogeochemical cycle of arsenic in the environment. The quantification of production of volatile arsenicals is discussed in this article.

Methods

Heat-resistant filamentous fungi Neosartorya fischeri, Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum, originally isolated from sediments highly contaminated with arsenic (more than 1403 mg.l-1 of arsenic), and the non-heat-resistant fungus Aspergillus niger were cultivated in 40 mL liquid Sabouraud medium (SAB) enriched by 0.05, 0.25, 1.0 or 2.5 mg of inorganic arsenic (H3AsO4). After 30-day and 90-day cultivation under laboratory conditions, the total arsenic content was determined in mycelium and SAB medium using the HG AAS analytical method. Production of volatile arsenic derivates by the Neosartorya fischeri strain was also determined directly by hourly sorption using the sorbent Anasorb CSC (USA).

Results

Filamentous fungi volatilized 0.025–0.321 mg of arsenic from the cultivation system, on average, depending on arsenic concentrations and fungal species. The loss of arsenic was calculated indirectly by determining the sum of arsenic content in the mycelium and culture medium. The amount of arsenic captured on sorption material was 35.7 ng of arsenic (22nd day of cultivation) and 56.4 ng of arsenic (29th day of cultivation) after one hour's sorption. Biosorption of arsenic by two types of fungal biomass was also discussed, and the biosorption capacity for arsenic of pelletized and compact biomass of Neosartorya fischeri was on average 0.388 mg and 0.783 mg of arsenic, respectively.

Discussion

The biosorption and amount of volatilized arsenic for each fungal species was evaluated and the effect of initial pH on the biovolatilization of arsenic was discussed.

Conclusions

The most effective biovolatilization of arsenic was observed in the heat-resistant Neosartorya fischeri strain, while biotransformation of arsenic into volatile derivates was approximately two times lower for the non-heat-resistant Aspergillus niger strain. Biovolatilization of arsenic by Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum was negligible. Results from biosorption experiments indicate that nearly all of an uptaken arsenic by Neosartorya fischeri was transformed into volatile derivates.

Recommendations and Perspective

. Biovolatilization and biosorption have a great potential for bioremediation of contaminated localities. However, results showed that not all fungal species are effective in the removal of arsenic. Thus, more work in this research area is needed.
  相似文献   
8.
The stability of lignite humic acids and four regenerated humic acids was estimated by employing differential scanning calorimetry. Induction period for the oxidative decomposition of humic matter was calculated from non-isothermal measurements at six different rates of heating. To simulate the gradual evolution history of humic acids, different intensities of oxidation attack by nitric acid on the original lignite was used. Experimental data showed higher stability of natural humic acids in the temperature range where the decomposition step occurred. On the other hand, extrapolation to lower temperatures and calculated kinetic parameters did not correspond to the order observed at higher temperatures. An oscillating trend of calculated parameters of the two proposed parts of stability was observed, which agreed with data concerning regenerated humic acids production. The approach applied in this work represents a rapid and useful method for evaluation of organic matter stability.  相似文献   
9.
We demonstrate the antioxidant potential of humic acids in (green) polymer chemistry. Lignite humic acids and its sodium and ammonium salts were mixed at different concentrations with polyvinyl alcohol and thermogravimetry was used to assess the influence on the thermo-oxidative stability of resulted blends. Both protonized form and ammonium salt of humic acids caused increased stability of investigated polymers in the studied concentration range (0.5–10% of humic acids in polymer). In contrast to protonized form, the ammonium salt also showed moderating effect on polymer degradation kinetics. Sodium salts caused substantially lower stabilizing effect and presence of 10% of humic matter caused even destabilization. In all cases, however, when the degradation has already started, the presence of humic acids and its salts caused more intensive polymer decomposition, which resulted in lower weight of char.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号