首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
废物处理   2篇
环保管理   2篇
综合类   3篇
基础理论   3篇
污染及防治   7篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2005年   3篇
  1993年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Demolition wastes may be used in different civil engineering applications as road constructions, concrete, and embankments or landfill. Regardless its application, leaching tests of the waste should be carried out to assess concentrations of pollutants. Concrete, brick and mixture of concrete, bricks, tiles and ceramics wastes were subject to percolation test—CEN/TS 14405, and batch test—SR EN 12457. The leachates were analyzed with respect to concentration of inorganic elements—arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, selenium, zinc, fluoride, chloride and sulfate, and organic compounds (phenol index). The concentrations of elements in leachates were compared with the limit values of European regulation for the acceptance of inert wastes at landfills. Generally, the releases of inorganic species in leachates were below limits values. Some waste leachates obtained by percolation and batch test had high values for phenol index.  相似文献   
2.

Background, aim, and scope

The need for global and integrated approaches to water resources management, both from the quantitative and the qualitative point of view, has long been recognized. Water quality management is a major issue for sustainable development and a mandatory task with respect to the implementation of the European Water Framework Directive as well as the Swiss legislation. However, data modelling to develop relational databases and subsequent geographic information system (GIS)-based water management instruments are a rather recent and not that widespread trend. The publication of overall guidelines for data modelling along with the EU Water Framework Directive is an important milestone in this area. Improving overall water quality requires better and more easily accessible data, but also the possibility to link data to simulation models. Models are to be used to derive indicators that will in turn support decision-making processes. For this whole chain to become effective at a river basin scale, all its components have to become part of the current daily practice of the local water administration. Any system, tool, or instrument that is not designed to meet, first of all, the fundamental needs of its primary end-users has almost no chance to be successful in the longer term.

Materials and methods

Although based on a pre-existing water resources management system developed in Switzerland, the methodological approach applied to develop a GIS-based water quality management system adapted to the Romanian context followed a set of well-defined steps: the first and very important step is the assessment of needs (on the basis of a careful analysis of the various activities and missions of the water administration and other relevant stakeholders in water management related issues). On that basis, a conceptual data model (CDM) can be developed, to be later on turned into a physical database. Finally, the specifically requested additional functionalities (i.e. functionalities not provided by classical commercial GIS software), also identified during the assessment of needs, are developed. This methodology was applied, on an experimental basin, in the Ialomita River basin.

Results

The results obtained from this action-research project consist of a set of tangible elements, among which (1) a conceptual data model adapted to the Romanian specificities regarding water resources management (needs, data availability, etc.), (2) a related spatial relational database (objects and attributes in tables, links, etc.), that can be used to store the data collected, among others, by the water administration, and later on exploited with geographical information systems, (3) a toolbar (in the ESRI environment) offering the requested data processing and visualizing functionalities. Lessons learned from this whole process can be considered as additional, although less tangible, results.

Discussion

The applied methodology is fairly classical and did not come up with revolutionary results. Actually, the interesting aspects of this work are, on the one hand, and obviously, the fact that it produced tools matching the needs of the local (if not national) water administration (i.e. with a good chance of being effectively used in the day-to-day practice), and, on the other hand, the adaptations and adjustments that were needed both at the staff level and in technical terms.

Conclusions

This research showed that a GIS-based water management system needs to be backed by some basic data management tools that form the necessary support upon which a GIS can be deployed. The main lesson gained is that technology transfer has to pay much attention to the differences in existing situations and backgrounds in general, and therefore must be able to show much flexibility. The fact that the original objectives could be adapted to meet the real needs of the local end-users is considered as a major aspect in achieving a successful adaptation and development of water resources management tools. Time needed to setup things in real life was probably the most underestimated aspect in this technology transfer process.

Recommendations and perspectives

The whole material produced (conceptual data model, database and GIS tools) was disseminated among all river basin authorities in Romania on the behalf of the national water administration (ANAR). The fact that further developments, for example, to address water quantity issues more precisely, as envisaged by ANAR, can be seen as an indication that this project succeeded in providing an appropriate input to improve water quality in Romania on the long term.
  相似文献   
3.
In this paper we investigate at laboratory scale the influence of the liquid/solid leaching conditions on the release of different chemical species from a reference porous material obtained by solidification of PbO and CdO with Portland cement. The pH influence on the dissolution of pollutants and the initial pore solution composition (target elements: Na(+), K(+), Ca(2+), Pb(2+), Cd(2+), SO(4)(2-)) were assessed by applying a methodology consisting of two equilibrium leaching tests, the Acid Neutralization Capacity (ANC) and the Pore Water (PW) tests and geochemical modelling. Samples of the same material were submitted in parallel to four different dynamic leaching tests in order to determine the influence of the sample shape (monolithic or granular) and eluate hydrodynamics (instantaneous L/S ratio, eluate renewal) on the leaching of the target elements. The comparison criteria were the eluate saturation state, the cumulative release and the released flux. Generally, the eluates obtained in the tests applied on granular material were more concentrated, even saturated for the eluate pH value with respect to Ca(2+), Pb(2+) and SO(4)(2-). The consequence of the eluate saturation is the slowing down effect on the dynamic release. The highest released flux was observed for the Monolith Leaching Test (MLT) involving the highest instantaneous L/S ratio and the lowest solid/liquid exchange surface and for which no saturation was observed, except Pb(2+) and SO(4)(2-) in some eluates. The maximum cumulative released-mass was obtained for the Column Leaching Test (CLT) applied on granular material having the highest exchange surface, the lowest instantaneous L/S and a continuous input flow of the leachant. The experimental results demonstrate the significance of the liquid/solid contact type which is also a scenario specific parameter.  相似文献   
4.
The perennially ice-covered, closed basin lakes in the McMurdo Dry Valleys respond rapidly to environmental changes, especially climate. For the past 15 years, the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program has monitored the physical, chemical and biological properties of the lakes in Taylor Valley. In order to better assess the physiochemical controls on the biological process within one of these lakes (Lake Hoare), we have used vertical profile data to estimate depth-dependent correlations between various lake properties. Our analyses reveal the following results. Primary production rates (PPR) are strongly correlated to light (PAR) at 12-15 m and to soluble reactive phosphorus (SRP) at 8-22 m. Chlorophyll-a (CHL) is also positively correlated to PAR at 14 m and greater depths, and SRP from 15 m and greater. This preliminary statistical analysis supports previous observations that both PAR and SRP play significant roles in driving plant growth in Lake Hoare. The lack of a strong relationship between bacterial production (BP) and dissolved organic carbon (DOC) is an intriguing result of the analysis.  相似文献   
5.
6.
We describe a simple method for measuring cellulose in soil. We used this method to measure the recovery of shredded office paper and pure medium fiber cellulose added to a Helvetia silt loam clay soil. This method consists of solvating cellulose from soil with 77% H2SO4 and analysis of the cellulose recovered by the phenol-sulfuric acid carbohydrate assay. Unlike previous related methods the modifications we propose allow good recovery of cellulose (~99%) and eliminate the need to autoclave the samples. We verified this method on soil spiked with up to 12% cellulose and found a good linear relationship between the amounts of cellulose added relative to that recovered. With proper fragmentation and dilution of the acid-treated soil samples, higher concentrations can be easily measured. We propose this technique as a robust and high throughput means to monitor the degradation of cellulose in paper spiked soil.  相似文献   
7.
Environmental Science and Pollution Research - The ex situ decontamination of uranium polluted soils was performed by alkaline washing using mechanical agitation and ultrasound field. Two types of...  相似文献   
8.
Understanding the fundamentals of arsenic adsorption and oxidation reactions is critical for predicting its transport dynamics in groundwater systems. We completed batch experiments to study the interactions of arsenic with a common MnO2(s) mineral, pyrolusite. The reaction kinetics and adsorption isotherm developed from the batch experiments were integrated into a scalable reactive transport model to facilitate column-scale transport predictions. We then completed a set of column experiments to test the predictive capability of the reactive transport model. Our batch results indicated that the commonly used pseudo-first order kinetics for As(III) oxidation reaction neglects the scaling effects with respect to the MnO2(s) concentration. A second order kinetic equation that explicitly includes MnO2(s) concentration dependence is a more appropriate kinetic model to describe arsenic oxidation by MnO2(s) minerals. The arsenic adsorption reaction follows the Langmuir isotherm with the adsorption capacity of 0.053micromol of As(V)/g of MnO2(s) at the tested conditions. The knowledge gained from the batch experiments was used to develop a conceptual model for describing arsenic reactive transport at a column scale. The proposed conceptual model was integrated within a reactive transport code that accurately predicted the breakthrough profiles observed in multiple column experiments. The kinetic and adsorption process details obtained from the batch experiments were valuable data for scaling to predict the column-scale reactive transport of arsenic in MnO2(s)-containing sand columns.  相似文献   
9.
Background, aim, and scope

The need for global and integrated approaches to water resources management, both from the quantitative and the qualitative point of view, has long been recognized. Water quality management is a major issue for sustainable development and a mandatory task with respect to the implementation of the European Water Framework Directive as well as the Swiss legislation. However, data modelling to develop relational databases and subsequent geographic information system (GIS)-based water management instruments are a rather recent and not that widespread trend. The publication of overall guidelines for data modelling along with the EU Water Framework Directive is an important milestone in this area. Improving overall water quality requires better and more easily accessible data, but also the possibility to link data to simulation models. Models are to be used to derive indicators that will in turn support decision-making processes. For this whole chain to become effective at a river basin scale, all its components have to become part of the current daily practice of the local water administration. Any system, tool, or instrument that is not designed to meet, first of all, the fundamental needs of its primary end-users has almost no chance to be successful in the longer term.

Materials and methods

Although based on a pre-existing water resources management system developed in Switzerland, the methodological approach applied to develop a GIS-based water quality management system adapted to the Romanian context followed a set of well-defined steps: the first and very important step is the assessment of needs (on the basis of a careful analysis of the various activities and missions of the water administration and other relevant stakeholders in water management related issues). On that basis, a conceptual data model (CDM) can be developed, to be later on turned into a physical database. Finally, the specifically requested additional functionalities (i.e. functionalities not provided by classical commercial GIS software), also identified during the assessment of needs, are developed. This methodology was applied, on an experimental basin, in the Ialomita River basin.

Results

The results obtained from this action-research project consist of a set of tangible elements, among which (1) a conceptual data model adapted to the Romanian specificities regarding water resources management (needs, data availability, etc.), (2) a related spatial relational database (objects and attributes in tables, links, etc.), that can be used to store the data collected, among others, by the water administration, and later on exploited with geographical information systems, (3) a toolbar (in the ESRI environment) offering the requested data processing and visualizing functionalities. Lessons learned from this whole process can be considered as additional, although less tangible, results.

Discussion

The applied methodology is fairly classical and did not come up with revolutionary results. Actually, the interesting aspects of this work are, on the one hand, and obviously, the fact that it produced tools matching the needs of the local (if not national) water administration (i.e. with a good chance of being effectively used in the day-to-day practice), and, on the other hand, the adaptations and adjustments that were needed both at the staff level and in technical terms.

Conclusions

This research showed that a GIS-based water management system needs to be backed by some basic data management tools that form the necessary support upon which a GIS can be deployed. The main lesson gained is that technology transfer has to pay much attention to the differences in existing situations and backgrounds in general, and therefore must be able to show much flexibility. The fact that the original objectives could be adapted to meet the real needs of the local end-users is considered as a major aspect in achieving a successful adaptation and development of water resources management tools. Time needed to setup things in real life was probably the most underestimated aspect in this technology transfer process.

Recommendations and perspectives

The whole material produced (conceptual data model, database and GIS tools) was disseminated among all river basin authorities in Romania on the behalf of the national water administration (ANAR). The fact that further developments, for example, to address water quantity issues more precisely, as envisaged by ANAR, can be seen as an indication that this project succeeded in providing an appropriate input to improve water quality in Romania on the long term.

  相似文献   
10.
Forest degradation in the tropics is often associated with roads built for selective logging. The protection of intact forest landscapes (IFL) that are not accessible by roads is high on the biodiversity conservation agenda and a challenge for logging concessions certified by the Forest Stewardship Council (FSC). A frequently advocated conservation objective is to maximize the retention of roadless space, a concept that is based on distance to the nearest road from any point. We developed a novel use of the empty‐space function – a general statistical tool based on stochastic geometry and random sets theory – to calculate roadless space in a part of the Congo Basin where road networks have been expanding rapidly. We compared the temporal development of roadless space in certified and uncertified logging concessions inside and outside areas declared IFL in 2000. Inside IFLs, road‐network expansion led to a decrease in roadless space by more than half from 1999 to 2007. After 2007, loss leveled out in most areas to close to 0 due to an equilibrium between newly built roads and abandoned roads that became revegetated. However, concessions in IFL certified by FSC since around 2007 continuously lost roadless space and reached a level comparable to all other concessions. Only national parks remained mostly roadless. We recommend that forest‐management policies make the preservation of large connected forest areas a top priority by effectively monitoring – and limiting – the occupation of space by roads that are permanently accessible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号