首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   1篇
  国内免费   15篇
安全科学   18篇
废物处理   33篇
环保管理   23篇
综合类   71篇
基础理论   53篇
污染及防治   109篇
评价与监测   23篇
社会与环境   4篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   12篇
  2017年   11篇
  2016年   21篇
  2015年   3篇
  2014年   13篇
  2013年   23篇
  2012年   17篇
  2011年   24篇
  2010年   17篇
  2009年   17篇
  2008年   19篇
  2007年   25篇
  2006年   21篇
  2005年   12篇
  2004年   9篇
  2003年   9篇
  2002年   6篇
  2001年   9篇
  2000年   4篇
  1999年   5篇
  1997年   2篇
  1993年   2篇
  1979年   1篇
  1976年   2篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1966年   3篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1960年   1篇
  1959年   2篇
  1957年   1篇
  1956年   2篇
  1955年   1篇
  1954年   2篇
  1952年   1篇
  1950年   1篇
  1948年   1篇
  1942年   1篇
  1940年   1篇
  1939年   1篇
  1936年   1篇
  1930年   1篇
  1927年   1篇
排序方式: 共有334条查询结果,搜索用时 31 毫秒
1.
2.
Carbon dioxide(CO2) emissions are a leading contributor to the negative effects of global warming. Globally, research has focused on effective means of reducing and mitigating CO2 emissions. In this study, we examined the efficacy of eco-industrial parks(EIPs) and accelerated mineral carbonation techniques in reducing CO2 emissions in South Korea.First, we used Logarithmic Mean Divisia Index(LMDI) analysis to determine the trends in carbon production and mitigation at the existing EIPs. We found that, although CO2 was generated as byproducts and wastes of production at these EIPs, improved energy intensity effects occurred at all EIPs, and we strongly believe that EIPs are a strong alternative to traditional industrial complexes for reducing net carbon emissions. We also examined the optimal conditions for using accelerated mineral carbonation to dispose of hazardous fly ash produced through the incineration of municipal solid wastes at these EIPs. We determined that this technique most efficiently sequestered CO2 when micro-bubbling, low flow rate inlet gas, and ammonia additives were employed.  相似文献   
3.
Demand for sustainable renewable energy is on an increase worldwide, whereas the supply is limited. This paper analyses the feasibility of generating electricity and supplying the surplus steam to Daeduk Industrial Complex, by incinerating the combustible municipal waste generated in Daejeon Metropolitan City. The economic feasibility of surplus biogas generated from the anaerobic digestion of food waste and food waste leachate has been analysed. This study estimated resource circulation facility to supply 23,200 m3/day of biogas generated to Daejeon Combined Heat and Power plant. By 2023, it is expected to supply 25.7 tons of steam per hour all year round. The additional steam demand in Daeduk Industrial Complex is estimated as 101,537 tons/year. Surplus biogas will be supplied through an additional 960-m new installation. The cost of biogas is estimated at 30% of the unit biogas production cost. Daejeon Combined Heat and Power plant expects to make 60% additional profit, and Daeduk Industrial Complex and the communities nearby expect to achieve 10% cost savings. It also reduces the dependence of energy on fossil fuels, contributes to national environmental energy policy in reduction in greenhouse gases, creates competitiveness in local business and reduces corporate tax and generates revenue.  相似文献   
4.
5.
Energy supply utilities release significant amounts of greenhouse gases (GHGs) into the atmosphere. It is essential to accurately estimate GHG emissions with their uncertainties, for reducing GHG emissions and mitigating climate change. GHG emissions can be calculated by an activity-based method (i.e., fuel consumption) and continuous emission measurement (CEM). In this study, GHG emissions such as CO2, CH4, and N2O are estimated for a heat generation utility, which uses bituminous coal as fuel, by applying both the activity-based method and CEM. CO2 emissions by the activity-based method are 12–19% less than that by the CEM, while N2O and CH4 emissions by the activity-based method are two orders of magnitude and 60% less than those by the CEM, respectively. Comparing GHG emissions (as CO2 equivalent) from both methods, total GHG emissions by the activity-based methods are 12–27% lower than that by the CEM, as CO2 and N2O emissions are lower than those by the CEM. Results from uncertainty estimation show that uncertainties in the GHG emissions by the activity-based methods range from 3.4% to about 20%, from 67% to 900%, and from about 70% to about 200% for CO2, N2O, and CH4, respectively, while uncertainties in the GHG emissions by the CEM range from 4% to 4.5%. For the activity-based methods, an uncertainty in the Intergovernmental Panel on Climate Change (IPCC) default net calorific value (NCV) is the major uncertainty contributor to CO2 emissions, while an uncertainty in the IPCC default emission factor is the major uncertainty contributor to CH4 and N2O emissions. For the CEM, an uncertainty in volumetric flow measurement, especially for the distribution of the volumetric flow rate in a stack, is the major uncertainty contributor to all GHG emissions, while uncertainties in concentration measurements contribute a little to uncertainties in the GHG emissions.
Implications:Energy supply utilities contribute a significant portion of the global greenhouse gas (GHG) emissions. It is important to accurately estimate GHG emissions with their uncertainties for reducing GHG emissions and mitigating climate change. GHG emissions can be estimated by an activity-based method and by continuous emission measurement (CEM), yet little study has been done to calculate GHG emissions with uncertainty analysis. This study estimates GHG emissions and their uncertainties, and also identifies major uncertainty contributors for each method.  相似文献   
6.
In South Korea, nine million tons of fly ash (FA) are annually produced and approximately 70 % is reutilized for industrial demand. For the prompt reuse and insufficient reclamation site, quality control of FA which is main productive construction material from coal ash is very important. Assessed Pozzolanic-activity Index (API) test which needs only 2 days for evaluation of pozzolanic reaction is currently considered as an alternative of activity index measurement. This paper aims for an applicability of API test for prompt quality control and investigation of domestic FA properties. For the work, FAs from two different power plant types are prepared, and quality tests are carried out based on Korean Standards (KS) methods and API method. Lots of test results are compared with those from API and K-value test for FA with age of 7 days–1 year. From the test results for FA aged 1 year, API results are evaluated to be closely related with those from activity index and K-value, and the correlations are improved with increasing ages regardless of plant types. The applicability of API test is verified and the reduced period of FA quality evaluation can accelerate prompt use and the related process of FA.  相似文献   
7.
As cities are becoming increasingly aware of problems related to conventional mobile collection systems, automated pipeline-based vacuum collection (AVAC) systems have been introduced in some densely populated urban areas. The reasons are that in addition to cost savings, AVAC systems can be efficient, hygienic, and environmentally friendly. Despite difficulties in making direct comparisons of municipal waste between a conventional mobile collection system and an AVAC system, it is meaningful to measure the quantities in each of these collection methods either in total or on a per capita generation of waste (PCGW, g/(day*capita)) basis. Thus, the aim of this study was to assess the difference in per capita generation of household waste according to the different waste collection methods in Korea. Observations on household waste show that there were considerable differences according to waste collection methods. The value of per capita generation of food waste (PCGF) indicates that a person in a city using AVAC produces 60 % of PCGF (109.58 g/(day*capita)), on average, compared with that of a truck system (173.10 g/(day*capita)) as well as 23 %p less moisture component than that with trucks. The value of per capita generation of general waste (PCGG) in a city with an AVAC system showed 147.73 g/(day*capita), which is 20 % less than that with trucks delivered (185 g/(day*capita)). However, general waste sampled from AVAC showed a 35 %p increased moisture content versus truck delivery.  相似文献   
8.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   
9.
To investigate heat transfer of char from waste tire pyrolysis, the cooling of char was simulated by the computational fluid dynamics. To scrutinize the heat transfer characteristics, bed height, temperature of cooling wall, and mixing time were selected as calculation parameters. From the results, increasing the char bed height from 0.005 to 0.02 m, the total heat transfer is decreased as from 45.5 to 26.5 J. As the char bed height is further increased from 0.02 to 0.06 m, the total heat transfer is decreased from 26.5 to 9.1 J. The char bed height affects the total heat transfer significantly. The total heat transfer decreases from 15.9 to 14.0 J as the temperature of cooling wall increases from 273.15 to 323.15 K. The total heat transfer mildly depends on the temperature of cooling wall. The particle mixing time increases from 10 to 120 s and the total heat transfer decreases from 28.6 to 22.6 J. It is noted that the particle contact is enhanced between char particles as well as the particles and cooling wall as the particle mixing time decreases. Consequently, heat transfer is augmented.  相似文献   
10.
To prepare for the international mercury convention, the characteristics of mercury emissions from a zinc smelting facility in South Korea have been reviewed and a material flow analysis (MFA) has been conducted in this research. As inputs into the mercury MFA study, zinc ores and sulfuric acid were examined, whereas wastewater sludge, effluence water, spent catalyst, and emissions from the casting and roasting processes were examined as outputs. Mercury concentrations extracted from end products like zinc ingots, cadmium ingots, and sulfuric acid were then analyzed. Our results showed that the wastewater sludge discharged from the zinc smelting process had a relatively higher concentration of mercury, indicating that the concentration of mercury was further enriched in the wastewater sludge. The wastes discharged through the zinc smelting process should be thoroughly controlled, as results of the MFA showed that approximately 89 % of the mercury contained in the original input was later found in the waste. According to this study, the higher the concentration of mercury within zinc ores at the input stage, the higher is the mercury concentration found in the wastewater sludge at the output stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号