首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
综合类   4篇
社会与环境   3篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2017年   2篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
利用中巴地球资源卫星数据反演武汉市湖泊营养状态指数   总被引:1,自引:0,他引:1  
以武汉市主要湖泊为例,研究了利用中巴地球资源卫星(CBERS2)数据反演水体营养状态指数(TLI)。研究旨在评估利用中巴地球资源卫星数据来估算内陆水体富营养化程度的可能性。首先利用地面水质监测数据计算武汉市某些湖泊监测点的“真实的”营养状态指数(包括综合营养状态指数和修正的Carlson营养状态指数),同时,在事先经过辐射校正和几何校正的CBERS2图像上,以9×9像元为采样窗口,提取各个对应地点的灰度值均值(从波段1至波段4);然后,采用多元逐步回归分析,以各波段灰度值均值为自变量,建立营养状态指数经验遥感反演模型;最后,利用模型对整个湖泊水体的营养化状态指数进行反演,并绘制了其空间分布图。 结果显示,营养状态指数的自然对数值与CBERS2图像各波段灰度值之间存在较好相关关系,回归系数平方值(R2)为0.51。利用反演模型反演得到的湖区水质分布与实际情况基本相符。由于CBERS2图像数据可以从我国许多数据分发中心免费获取,这为低成本的水质遥感监测提供了一条途径。  相似文献   
2.
湖泊水体富营养化的监测评价是湖泊水资源管理和水环境保护的基础性工作。基于GF-1号WFV遥感影像和综合营养状态指数法,通过82个站点实测数据建立多元线性回归和RBF神经网络模型,对武汉市及其周边地区主要湖泊综合营养状态指数进行了反演。反演的结果显示,武汉市及周边大部分湖泊水域处于轻度富营养和中营养状态,局部湖区为中度富营养状态。验证结果表明:GF-1号WFV多光谱数据用于监测大面积湖群水质变化是可行的;两种模型都可以建立实测数据与遥感信息的函数关系,根据函数可以反演湖泊水质综合营养状态指数,进而实现大面积湖泊水质动态监测;而RBF神经网络模型预测的R2为0.742 3,均方根误差为3.72,其反演精度更高,更适合于监测内陆湖泊水质变化。  相似文献   
3.
2021年在武汉城区开展了夏季光化学污染过程中大气羰基化合物的离线观测和大气挥发性有机物(VOCs)的在线监测,研究该时期乙二醛和甲基乙二醛的污染特征并利用正交矩阵因子模型(PMF)对其来源进行解析.武汉夏季大气乙二醛和甲基乙二醛的平均浓度分别为(0.42±0.34)×10-9和(0.69±0.19)×10-9,两者均呈现“单峰型”日变化规律,在上午10:00达到峰值.PMF共解析出6类源,乙二醛的源贡献为二次生成(A)(70.86%)>溶剂使用源(8.05%)>机动车排放源(8.04%)>燃烧源(6.43%)>工业源(3.38%)>二次生成(B)(3.24%);甲基乙二醛的主要排放源及贡献率为二次生成(A)(39.10%)>二次生成(B)(31.54%)>机动车排放源(13.26%)>溶剂使用源(8.21%)>燃烧源(5.80%)>工业源(2.09%).由于强烈的光化学作用,二次生成是乙二醛和甲基乙二醛最主要的来源.光化学污染期与非污染期相比,二次生成(A)对乙二醛和甲基乙二醛的贡...  相似文献   
4.
利用耦合了污染源在线追踪模块的化学传输模式NAQPMS (Nested Air Quality Prediction Model System),结合地面细颗粒物(PM2.5)的小时观测数据,模拟了2014年1、4、7、10月4个月份武汉地区PM2.5浓度时空分布特征,量化了本地、武汉城市圈及远距离地区对武汉PM2.5浓度贡献.研究发现,2014年武汉市PM2.5年均浓度为85.3 μg·m-3,污染天(PM2.5日均值≥75 μg·m-3)占全年总天数的47.9%.细颗粒物的月均值呈现出季节性特征,即冬季污染最为严峻,1月均值为199.1 μg·m-3,PM2.5浓度超标持续一整月;夏季空气质量最好,春秋介于两者之间.模拟的PM2.5平均浓度在空间上大致呈现"城区高,郊区低"的分布态势.污染物区域来源解析发现,武汉市本地排放源贡献在1月最低,为34.1%,表明外来源贡献对长期灰霾的形成起决定性作用.7月本地源影响最显著(65.7%),和毗邻城市源(23.1%)一起成为夏季污染物的主要来源.4月和10月本地排放贡献比分别为49.1%和42.1%.4个月份,武汉城市圈对该市PM2.5浓度的贡献差异不大,范围在20.8%~24.1%.受大尺度天气系统的影响,远距离传输贡献率趋势与本地来源相反,占10.6%~35.3%.研究结果表明污染气团跨界输送对武汉不同季节PM2.5浓度有重要贡献.在冬季大范围污染背景下,污染物区域大范围协同控制才能有效减缓武汉PM2.5污染问题;而夏季对本地及近周边城市的减排措施可以有效改善武汉的空气质量.  相似文献   
5.
城市可吸入颗粒物(PM_(10))某一时刻或短期的空间分布,主要受气象条件控制,而一年或多年平均分布则主要取决于排放源。这些排放源与城市交通道路、工业区、城市建成区和开发区等的下垫面分布密切相关,而年地表温差可以综合反映下垫面的这些特性,所以可以利用这种相关关系,建立模型来估计年平均PM_(10)的空间分布。以武汉市为例,首先利用Landsat 8热红外遥感数据反演出2013年和2014年夏天和冬天的地表温度,计算出地表温差值;然后,根据影响随距离衰减的地学原理,利用反距离加权法(IDW),得到任意像元处年地表温差加权值,并与地面实测的2013年和2014年PM_(10)年均值做一元线性回归,通过精度对比寻找到最佳年地表温差加权值,并得到空间分布估计模型,其拟合优度R2达到0.655和0.752;最后利用该模型得到武汉市2013年和2014年PM_(10)年均值空间分布图。结果表明,武汉PM_(10)年均值浓度高值区主要集中于主城区,郊区部分人口相对集中的区域PM_(10)也较高,低值区分布在郊区乡镇、偏远山区以及有大型水体的地方。由于新方法充分考虑了下垫面的影响,与克里金内插相比,更能精细地刻画和反映PM_(10)的分布特征和规律,而且简单有效,有一定的应用价值。  相似文献   
6.
于2014年1-12月在武汉市城区对大气中105种挥发性有机化合物(VOCs)进行在线监测,以便研究武汉市区VOCs的组成特征及变化规律。同时评估大气VOCs对武汉市臭氧(O_3)生成的影响,并探讨关键VOCs活性物种及来源。结果表明,武汉市2014年大气总挥发性有机化合物(TVOCs)年平均浓度为(92.88±1.06)μg/cm~3,乙烷、丙烷、乙烯、正丁烷、甲苯是浓度最大的5个物种。大气TVOCs的浓度在冬季最高夏季最低,昼夜变化表现为明显的早晚双高峰特征。在非甲烷碳氢化合物(NMHCs)中,烯炔烃的臭氧生成潜势最大,其次为芳香烃和烷烃。武汉市臭氧生成潜势最大的5个物种分别为乙烯、间/对-二甲苯、丙烯、甲苯和异丁烯。机动车排放是武汉市大气VOCs的重要来源,控制机动车VOCs排放有助于削减大气VOCs活性较大的组分,从而减少臭氧的生成。  相似文献   
7.
光散射法传感器微站以其体积小、反应迅速、成本低等优点,已成为城市PM2.5规模化移动监测的新选择.由于其标准与传统标准台站不同,必须对这类微站的监测数据进行准确地校正.本研究利用2021年06月—2022年02月武汉市江夏区标准台站及同期传感器微站监测数据,探讨传感器微站监测误差与温度、相对湿度的关系,并通过随机森林回归(Random Forest Regressor,RFR)校正传感器微站PM2.5监测数据.对比单一RFR模型、按气象因素分类后RFR模型、“小波去噪+RFR”组合模型、“加权滑动平均去噪+RFR”组合模型校正效果,结果表明:RFR模型和分类后RFR模型均出现泛化能力差的问题,不能满足校正需求;“小波去噪+RFR”组合模型、“加权滑动平均去噪+RFR”组合模型平均绝对误差分别为8.77 μg·m-3和4.78 μg·m-3,平均相对误差分别为40.80%和18.13%.去噪组合模型能满足校正需求,且“加权滑动平均+RFR”组合模型校正效果明显优于“小波去噪+RFR”组合模型.研究结果可为光散射法传感器微站PM2.5监测值校正提供有益参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号