首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础理论   3篇
  2018年   1篇
  2011年   2篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
依据自然雪被分布的差异,在青藏高原东缘高寒草甸中设置3条样带(即深雪、中等厚度雪被和浅雪),于2008年的秋冬过渡期,连续监测各样带中的雪被厚度和土壤温度,并采用原位培养法测定每月的土壤氮素氨化、硝化和矿化速率,以研究不同厚度雪被对高寒草甸土壤氮矿化的影响.结果表明,月均土温、每月日最高土温均值分别与雪被厚度极显著相关,二次函数关系拟合较好(R2=0.576,0.685),且根据每月日最高土温均值与雪被厚度的二次函数关系方程可知,25 cm厚的雪被可以起到较好的隔绝效果;土壤含水量受雪被厚度和土壤温差两个因素的显著影响.在秋冬过渡期末,浅雪梯度下土壤硝态氮含量显著降低,且雪被下的净氮矿化速率与月均土温、每月日最高土温均值、每月日最低土温均值都分别呈极显著相关,二次函数关系拟合较好(R2=0.589,0.541,0.601).研究表明,不同厚度的雪被对土壤温度和含水量影响显著,从而显著地影响着土壤氮的矿化,深雪更有利于氨化、硝化和氮矿化.图7表2参36  相似文献   
2.
冻融交替对高寒草甸土壤微生物量氮和有机氮组分的影响   总被引:5,自引:0,他引:5  
采用Bremner氮素分级方法,研究冻融交替对高寒草甸土壤微生物量氮和有机氮组分的影响.结果表明:随着冻融时间的变化,微生物量氮含量先减少后增加,在冻融1 d后达到最小值,4℃、-4℃、-4~4℃和-20~4℃处理下分别下降了50.37%、57.47%、37.79%和37.51%;氨基酸氮和氨基糖氮变化趋势相同,先增加后减少,均在冻融1 d后达到最大值,各处理氨基酸氮含量分别为处理前的1.6倍、1.47倍、1.44倍和1.5倍,氨基糖分别为处理前的1.66倍、1.58倍、1.65倍和1.91倍;氨态氮含量先增加后减少,-20~4℃处理在冻融1 d后为处理前的1.25倍,其余3个处理在冻融3 d后达到最大值;各处理酸解未知氮的变化趋势大体相同,在冻融25 d后达到最小值.研究表明冻融时间对微生物量氮和有机氮组分影响显著,微生物量氮含量是有机氮组分变化的主要原因.  相似文献   
3.
建立了高效液相色谱-电感耦合等离子体质谱联用技术(HPLC-ICP-MS)同时测定水样中硒酸盐(Se(Ⅵ))、亚硒酸盐(Se(Ⅳ))、硒代蛋氨酸(Se Met)、硒代胱氨酸(SeCyS_2)、甲基硒代半胱氨酸(MeSeCyS)、硒代乙硫氨酸(SeEt)、硒脲(SeUr)和砷甜菜碱(AsB)、一甲基砷酸(MMA)、二甲基砷酸(DMA)、亚砷酸盐(As(Ⅲ))、砷酸盐(As(Ⅴ))共12种不同形态元素的分析方法.采用安捷伦ZORBAX SB-Aq反相色谱柱,使用20 mmol·L~(-1)柠檬酸+5 mmol·L~(-1)己烷磺酸钠体系(pH=4.4)为流动相,流速为1.0 mL·min~(-1),电感耦合等离子体质谱(ICP-MS)检测,在7.5 min内完全分离12种不同砷、硒形态.12种元素形态的线性相关系数均大于0.9995,检出限分别为0.15、0.13、0.15、0.18、0.12、0.29、0.25、0.26、0.10、0.15、0.14、0.10μg·L~(-1),精密度均在10%以内,加标回收率为76.9%—106.2%.该方法完全满足水样中7种硒和5种砷形态的准确定量分析.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号