首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   1篇
基础理论   2篇
污染及防治   6篇
社会与环境   1篇
  2019年   2篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2005年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
We studied the relationship between particle-size selectivity and variable particle-size distribution in the American mud snail Hydrobia totteni Morrison (Prosobranchia: Hydrobiidae) collected in the summer of 1979 and 1982, from saltmarsh mudflats at Flax Pond, Old Field, New York, USA. Using individual size fractions of native sediment, snails fed fastest on intermediate-sized particles (41 to 63 m); this pattern was related to diatom abundance, which was similarly greatest on the intermediate particle-size classes. These results conform to another study, which found a quite different relationship between feeding rate and particle size, but a similarly strong correlation between particle size and diatom abundance. Snails were fed a range of particle-size distributions of glass beads. As median particle size increased, preference shifted towards smaller particles. This shift cannot be explained by feeding rates determined from individual particle-size classes. The most reasonable alternative model is a shift towards feeding on fine particles that occur among the coarser particles that are not ingested. Our data suggest that diatom growth on certain particle sizes is as important to particle selectivity as the particle sizes themselves. Particle size preference cannot be extrapolated from studies of feeding rates on individual size classes since selectivity is qualitatively different in mixtures of various size classes.  相似文献   
2.
Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as "historically mined" or "unmined," and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.  相似文献   
3.
ABSTRACT: Two types of rapid water table responses to rain were observed in a northern Michigan peatland. The first, called the Lisse effect, occurred during rains of high intensity when the infiltrating water acted as a tightly closing lid that forced the water table to rise to the level required to compensate for the pressure increase. The second, called the Wieringermeer effect, was a rapid rise of the water table to the surface due to the conversion of capillary to phreatic water and was always followed by an equally rapid decline after cessation of the rainfall. We simulated these phenomena in the laboratory and estimated the critical parameters that determine their occurrence. The recognition of the importance of the capillary fringe is essential in evaluating the role of wetlands in flood control and in wastewater treatment.  相似文献   
4.
The use of a two-step thermal-oxidative analysis (TOA) technique for quantification of the mass of total carbon (TC) and elemental carbon (EC) of turbine engine-borne particulate matter (PM) has been evaluated. This approach could be used in lieu of analysis methods which were developed to characterize diluted PM. This effort is of particular interest as turbine engine PM emissions typically have a higher EC content than ambient aerosols, and filter sample mass loadings can be significantly greater than recommended for existing analysis techniques. Analyses were performed under a pure oxygen environment using a two-step temperature profile; reference carbon and actual PM samples were used to identify appropriate analysis conditions. Thermal gravimetric analysis (TGA) methods were used to provide guidance on the nature of the carbon in several of the materials. This was necessary as a standard reference material does not exist for determination of the EC fraction in PM. The TGA also assisted in identifying an appropriate temperature range for the first-stage of the TOA method. Quantification of TC and EC for turbine engine PM samples using TOA was compared to results obtained using the NIOSH 5040 thermal-optical method. For first-stage TOA temperatures of 350°C and 400°C, excellent agreement between the techniques was observed in both the quantified TC and EC, supporting the viability for using TOA for analysis of turbine engine PM samples. A primary benefit of using TOA for these types of PM samples is that filters with relatively high PM mass loadings (sampled at the emission source) can be readily analyzed. In addition, an entire filter sample can be evaluated, as compared to the use of a filter punch sample for the NIOSH technique. While the feasibility of using a TOA method for engine PM samples has been demonstrated, future studies to estimate potential OC charring and oxidation of EC-type material may provide additional data to assess its impact on the OC/EC fractions for other carbon-type measurements.

Implications: This work presents results and procedures of an analytical method for the determination of total and elemental carbon, i.e., TC and EC present in combustion source particulate matter samples. In general, it is shown that the LECO TOA methodology is as reliable and comprehensive as NIOSH 5040 for determining TC and EC carbon types in particulate matter present in turbine emission sources, and should be considered as an alternative. Principles of the methodology, differences, and corresponding agreement with the standard NIOSH 5040 method and TGA analysis are discussed.  相似文献   

5.
The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.  相似文献   
6.
River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p < 0.001), resulting in migration rates of 218 m/year (0.22 km/year) and <0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).  相似文献   
7.
Abstract

The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8–fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for off-line analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of ~15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained using standard American Society for Testing and Materials (ASTM) fuel specifications methods are presented.  相似文献   
8.
Emission measurements of black carbon (BC) mass were conducted on a T63 turboshaft engine, operated at idle and cruise power with conventional and alternative fuels, using an Artium LII-300 laser-induced incandescence analyzer (LII) and AVL model 483 micro soot sensor (MSS) photoacoustic instrument using the manufacturer’s calibration for both instruments. These measurements were compared with elemental carbon (EC) determined by manual and semicontinuous thermal-optical transmission analyses according to National Institute for Occupational Safety and Health (NIOSH) method 5040 as the reference method. The results indicate that both the LII and MSS instruments show good linear correlation with EC for the two fuels and two engine power conditions evaluated. The LII measurements were observed to be biased high (27–49%) and the MSS measurements were biased low (24–35%) relative to EC. The agreement between the instruments and the reference method was substantially improved by applying a calibration of the instruments against a common BC aerosol source. Test data also suggest that the two instruments show some sensitivity to particle size (or properties related to size), specifically for particles with a geometric mean diameter (GMD) <30 nm. This sensitivity is problematic, since new engines or certain combustion conditions in current engines will produce smaller particles compared with the T63 model tested in this study. Further assessments of instrument performance for particles within this size range are therefore warranted.

Implications: Accurate black carbon emission measurements are needed to certify new and in-production commercial aircraft engines. Both the Artium LII-300 and AVL 483 micro soot sensor are currently approved by the International Civil Aviation Organization for this purpose. This study compares the two instruments against elemental carbon (EC) using NIOSH method 5040 as the reference using a T63 turboshaft engine. The results indicate that both instruments correlate reasonably well with EC, and the correlation substantially improved when applying a calibration against a common aerosol source. Sensitivity to particle size may be an issue for both instruments.  相似文献   

9.
To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well.  相似文献   
10.
Impacts of biodiesel on pollutant emissions of a JP-8-fueled turbine engine   总被引:1,自引:0,他引:1  
The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for offline analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of approximately 15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained using standard American Society for Testing and Materials (ASTM) fuel specifications methods are presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号