首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
基础理论   7篇
灾害及防治   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  1994年   1篇
排序方式: 共有8条查询结果,搜索用时 187 毫秒
1
1.
Abstract: Reintroduction of captive‐reared animals has become increasingly popular in recent decades as a conservation technique, but little is known of how demographic factors affect the success of reintroductions. We believe whether the increase in population persistence associated with reintroduction is sufficient to warrant the cost of rearing and relocating individuals should be considered as well. We examined the trade‐off between population persistence and financial cost of a reintroduction program for Crested Coots (Fulica cristata). This species was nearly extirpated from southern Europe due to unsustainable levels of hunting and reduction in amount and quality of habitat. We used a stochastic, stage‐based, single‐sex, metapopulation model with site‐specific parameters to examine the demographic effects of releasing juveniles or adults in each population for a range of durations. We parameterized the model with data from an unsuccessful reintroduction program in which juvenile captive‐bred Crested Coots were released between 2000 and 2009. Using economic data from the captive‐breeding program, we also determined whether the strategy that maximized abundance coincided with the least expensive strategy. Releasing adults resulted in slightly larger final abundance than the release of nonreproductive juveniles. Both strategies were equally poor in achieving a viable metapopulation, but releasing adults was 2–4 times more expensive than releasing juveniles. To obtain a metapopulation that would be viable for 30 years, fecundity in the wild would need to increase to the values observed in captivity and juvenile survival would need to increase to almost unity. We suggest that the most likely way to increase these vital rates is by increasing habitat quality at release sites.  相似文献   
2.
Abstract:  Fungi are a hyperdiverse taxonomic group that may be disappearing at a very high rate. Identifying fungal species is difficult in the field, and the use of highly specialized taxonomists is required. Data and expertise on vascular plants are, on the other hand, much more common and easy to find. We tested the potential of using vascular plants as surrogates to select reserve sites that maximize the pooled number of fungal species. We used data from 25 forest plots in Tuscany, Italy, that were sampled for woody plants, all other plants, and fungi. Species richness of woody plants and all other plants did not correlate with species richness of fungi. The gradients in species composition were similar among the three considered groups, as indicated by a detrended correspondence analysis ordination and species complementarity between pairs of plots. Fungal communities of the 25 plots had a lower β diversity than plant communities, and there were no pairs of totally complementary sites. Site prioritization for conservation was obtained through integer linear programming to find for any given number of sites those combinations containing the maximum pooled species richness of woody plants or all plants. The combinations of sites obtained by optimizing vascular plant species did not maximize the pooled species richness of fungi, whereas those obtained by maximizing woody plant species provided better results for sets of four to eight plots, but not for all the possible combinations. These results indicated that, in general, vascular plants cannot be used to maximize fungal species richness.  相似文献   
3.
Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well‐established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation‐oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social–ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision‐support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem‐based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. La Práctica Actual y los Prospectos Futuros para los Datos Sociales en la Planeación Costera y Oceánica  相似文献   
4.
5.
6.
7.
Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal‐limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate‐suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate‐suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague‐transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. Efectos del Cambio Climático, Especies Invasoras y Enfermedades sobre la Distribución de Cangrejos de Río Europeos Nativos  相似文献   
8.
Double Allee Effects and Extinction in the Island Fox   总被引:3,自引:0,他引:3  
Abstract:  An Allee effect (AE) occurs in populations when individuals suffer a decrease in fitness at low densities. If a fitness component is reduced (component AE), per capita population growth rates may decline as a consequence (demographic AE) and extinction risk is increased. The island fox ( Urocyon littoralis ) is endemic to six of the eight California Channel Islands. Population crashes have coincided with an increase in predation by Golden Eagles ( Aquila chrysaetos ). We propose that AEs could render fox populations more sensitive and may be a likely explanation for their sharp decline. We analyzed demographic data collected between 1988 and 2000 to test whether fox density (1) influences survival and reproductive rates; (2) interacts with eagle presence and affects fox fitness parameters; and (3) influences per capita fox population trends. A double component AE simultaneously influenced survival (of adults and pups) and proportion of breeding adult females. The adult survival AE was driven by predation by eagles. These component AEs led to a demographic AE. Multiple-component AEs, a predation-driven AE, and the simultaneous occurrence of both component and demographic AEs in a mammal are all previously unreported processes. Populations below 7 foxes/km2 could have suboptimal population growth rates due to the demographic AE, and AEs may have contributed to the dramatic declines in three fox populations. Because fox densities in critically endangered populations are well below this level, removing Golden Eagles appears necessary to prevent a predation-driven AE. Conservationists should also be aware of AEs when planning the release of captive foxes. More generally, our findings highlight the danger of overlooking AEs in the conservation of populations of rare or threatened species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号