首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
基础理论   1篇
  2010年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 390 毫秒
1
1.
A pilot carbon dioxide (CO2) sequestration experiment was carried out in the Michigan Basin in which ~10,000 tonnes of supercritical CO2 was injected into the Bass Island Dolomite (BILD) at 1050 m depth. A passive seismic monitoring (PSM) network was operated before, during and after the ~17-day injection period. The seismic monitoring network consisted of two arrays of eight, three-component sensors, deployed in two monitoring wells at only a few hundred meters from the injection point. 225 microseismic events were detected by the arrays. Of these, only one event was clearly an injection-induced microearthquake. It occurred during injection, approximately 100 m above the BILD formation. No events, down to the magnitude ?3 detection limit, occurred within the BILD formation during the injection. The observed seismic waveforms associated with the other 224 events were quite unusual in that they appear to contain dominantly compressional (P) but no (or extremely weak) shear (S) waves, indicating that they are not associated with shear slip on faults. The microseismic events were unusual in two other ways. First, almost all of the events occurred prior to the start of injection into the BILD formation. Second, hypocenters of the 94 locatable events cluster around the wells where the sensor arrays were deployed, not the injection well. While the temporal evolution of these events shows no correlation with the BILD injection, they do correlate with CO2 injection for enhanced oil recovery (EOR) into the 1670 m deep Coral Reef formation that had been going on for ~2.5 years prior to the pilot injection experiment into the BILD formation. We conclude that the unusual microseismic events reflect degassing processes associated with leakage up and around the monitoring wells from the EOR-related CO2 injection into the Coral Reef formation, ~700 m below the depth of the monitoring arrays. This conclusion is also supported by the observation that as soon as injection into the Coral Reef formation resumed at the conclusion of the BILD demonstration experiment, seismic events (essentially identical to the events associated with the Coral Reef injection prior to the BILD experiment) again started to occur close to a monitoring arrays. Taken together, these observations point to vertical migration around the casings of the monitoring wellbores. Detection of these unusual microseismic events was somewhat fortuitous in that the arrays were deployed at the depth where the CO2 undergoes a strong volume increase during transition from a supercritical state to a gas. Given the large number of pre-existing wellbores that exist in depleted oil and gas reservoirs that might be considered for CO2 sequestration projects, passive seismic monitoring systems could be deployed at appropriate depths to systematically detect and monitor leakage along them.  相似文献   
2.
We studied a guild of desert winter annual plants that differ in long-term variation in per capita reproductive success (lb, the product of per capita survival from germination to reproduction, l, times per capita reproduction of survivors, b) to relate individual function to population and community dynamics. We hypothesized that variation in lb should be related to species' positions along a trade-off between relative growth rate (RGR) and photosynthetic water-use efficiency (WUE) because lb is a species-specific function of growing-season precipitation. We found that demographically variable species have greater RGR and greater leaf carbon isotope discrimination (Delta, a proxy inversely related to WUE). We examined leaf nitrogen and photosynthetic characteristics and found that, in this system, variation in Delta is a function of photosynthetic demand rather than stomatal regulation of water loss. The physiological characteristics that result in low Delta in some species may confer greater photosynthetic performance during the reliably moist but low temperature periods that immediately follow winter rainfall in the Sonoran Desert or alternatively during cool periods of the day or early growing season. Conversely, while species with high Delta and high RGR exhibit low leaf N, they have high biomass allocation to canopy leaf area display. Such trait associations may allow for greater performance during the infrequent conditions where high soil moisture persists into warmer conditions, resulting in high demographic variance. Alternatively, high variance could arise from specialization to warm periods of the day or season. Population dynamic buffering via stress tolerance (low RGR and Delta) correlates negatively with buffering via seed banks, as predicted by bet-hedging theory. By merging analyses of population dynamics with functional trait relationships, we develop a deeper understanding of the physiological, ecological, and evolutionary mechanisms involved in population and community dynamics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号