首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   3篇
  国内免费   2篇
安全科学   4篇
废物处理   22篇
环保管理   23篇
综合类   11篇
基础理论   35篇
污染及防治   71篇
评价与监测   26篇
社会与环境   12篇
  2023年   4篇
  2022年   11篇
  2021年   10篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   8篇
  2015年   7篇
  2014年   12篇
  2013年   23篇
  2012年   8篇
  2011年   13篇
  2010年   6篇
  2009年   11篇
  2008年   14篇
  2007年   5篇
  2006年   9篇
  2005年   9篇
  2004年   7篇
  2003年   9篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1971年   1篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
  1954年   1篇
排序方式: 共有204条查询结果,搜索用时 31 毫秒
1.

Landslide poses severe threats to the natural landscape of the Lesser Himalayas and the lives and economy of the communities residing in that mountainous topography. This study aims to investigate whether the landscape change has any impact on landslide occurrences in the Kalsi-Chakrata road corridor by detailed investigation through correlation of the landslide susceptibility zones and the landscape change, and finally to demarcate the hotspot villages where influence of landscape on landslide occurrence may be more in future. The rational of this work is to delineate the areas with higher landslide susceptibility using the ensemble model of GIS-based multi-criteria decision making through fuzzy landslide numerical risk factor model along the Kalsi-Chakrata road corridor of Uttarakhand where no previous detailed investigation was carried out applying any contemporary statistical techniques. The approach includes the correlation of the landslide conditioning factors in the study area with the changes in land use and land cover (LULC) over the past decade to understand whether frequent landslides have any link with the physical and hydro-meteorological or, infrastructure, and socioeconomic activities. It was performed through LULC change detection and landslide susceptibility mapping (LSM), and spatial overlay analysis to establish statistical correlation between the said parameters. The LULC change detection was performed using the object-oriented classification of satellite images acquired in 2010 and 2019. The inventory of the past landslides was formed by visual interpretation of high-resolution satellite images supported by an intensive field survey of each landslide area. To assess the landslide susceptibility zones for 2010 and 2019 scenarios, the geo-environmental or conditioning factors such as slope, rainfall, lithology, normalized differential vegetation index (NDVI), proximity to road and land use and land cover (LULC) were considered, and the fuzzy LNRF technique was applied. The results indicated that the LULC in the study area was primarily transformed from forest cover and sparse vegetation to open areas and arable land, which is increased by 6.7% in a decade. The increase in built-up areas and agricultural land by 2.3% indicates increasing human interference that is continuously transforming the natural landscape. The landslide susceptibility map of 2019 shows that about 25% of the total area falls under high and very high susceptibility classes. The result shows that 80% of the high landslide susceptible class is contained by LULC classes of open areas, scrubland, and sparse vegetation, which point out the profound impact of landscape change that aggravate landslide occurrence in that area. The result acclaims that specific LULC classes, such as open areas, barren-rocky lands, are more prone to landslides in this Lesser Himalayan road corridor, and the LULC-LSM correlation can be instrumental for landslide probability assessment concerning the changing landscape. The fuzzy LNRF model applied has 89.6% prediction accuracy at 95% confidence level which is highly satisfactory. The present study of the connection of LULC change with the landslide probability and identification of the most fragile landscape at the village level has been instrumental in delineation of landslide susceptible areas, and such studies may help the decision-makers adopt appropriate mitigation measures in those villages where the landscape changes have mainly resulted in increased landslide occurrences and formulate strategic plans to promote ecologically sustainable development of the mountainous communities in India's Lesser Himalayas.

  相似文献   
2.
Fifty percent of the dry zone areas in Sri Lanka have fluoride levels above 1 ppm. This paper discusses the ground conditions and recommends an appropriate range of fluoride in drinking water which can support preventive practices for improving the oral health of children 8-years old and younger. In efforts to address the Chronic Kidney Disease of Unknown etiology (CKDU), water treatment to reduce contaminant level in potable water has been implemented. Such treatment would also remove fluoride and has resulted in potable water with various fluoride levels, depending on concentrations in the raw water. While it is important to reduce fluoride levels, it is important to have appropriate residual levels for prevention of dental caries. It needs, however, to be noted fluoride in excess can cause dental fluorosis. In Sri Lanka's dry zone areas increasing prevalence of dental fluorosis with decreasing prevalence of dental caries has been noted. Consumption of tea and powdered milk could increase total intake of fluoride. Fluoridated toothpaste, when used properly, may, however, result in negligible intake of fluoride. Sri Lanka's hot tropical climate which results in substantial intake of fluids reinforces the need to consider reduction in water fluoride. Consideration of local studies and international standards indicate fluoride levels should be in the range of 0.225–0.500 ppm. In the range of 0.225–0.500 ppm, the prevalence of dental fluorosis and caries was only 14% and 8%, respectively, in an endemic district. When fluoride levels are above 0.500 ppm, the issue of dental fluorosis shall need to be addressed. When levels are below 0.225 ppm, oral health care services shall need to be directed at preventing dental caries.  相似文献   
3.
Electroosmotic dewatering of dredged sediments: bench-scale investigation   总被引:1,自引:0,他引:1  
The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further.  相似文献   
4.
This study explores different socio-economic and institutional factors influencing the adoption of improved soil conservation technology (ISCT) on Bari land (Rainfed outward sloping terraces) in the Middle Mountain region of Central Nepal. Structured questionnaire survey and focus group discussion methods were applied to collect the necessary information from farm households. The logistic regression model predicted seven factors influencing the adoption of improved soil conservation technology in the study area including years of schooling of the household head, caste of the respondent, land holding size of the Bari land, cash crop vegetable farming, family member occupation in off farm sector, membership of the Conservation and Development Groups, and use of credit. The study showed that technology dissemination through multi-sectoral type community based local groups is a good option to enhance the adoption of improved soil conservation technology in the Middle Mountain farming systems in Nepal. Planners and policy makers should formulate appropriate policies and programs considering the farmers' interest, capacity, and limitation in promoting improved soil conservation technology for greater acceptance and adoption by the farmers.  相似文献   
5.
 In several branches of science and technology a gaseous phase is dispersed into a liquid in the form of bubbles, a gaseous component then dissolves into the liquid and subsequently undergoes chemical reaction. The overall process performance can be improved substantially when the area of gas–liquid contact is increased. By subjecting the liquid phase to low frequency vibrations, the bubbles are shown to suffer significant breakage, induced by resonance. When the vibration is properly tuned, the interfacial area is found to increase by a factor of 1.8–2.4, depending on the properties of the liquid. Resonance-induced bubble breakage phenomena have a great potential for improving the rates of chemical processes involving fast reactions, with minimal energy input. Received: 7 July 2000 / Accepted in revised form: 28 August 2000  相似文献   
6.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   
7.
The present study attempts to analyze the biosorption trend of biosorbent Caulerpa fastigiata (macroalgae) biomass for removal of toxic heavy metal ion Pb (II) from solution as a function of initial metal ion concentration, pH, temperature, sorbent dosage, and biomass particle size. The sorption data fitted with various isotherm models and Freundlich model was the best one with correlation coefficient of 0.999. Kinetic study results revealed that the sorption data on Pb (II) with correlation coefficient of 0.999 can best be represented by pseudo-second-order. The biosorption capacity (q e ) of Pb (II) is 16.11?±?0.32 mg g?1 on C. fastigiata biomass. Thermodynamic studies showed that the process is exothermic (ΔH° negative). Free energy change (ΔG°) with negative sign reflected the feasibility and spontaneous nature of the process. The SEM studies showed Pb (II) biosorption on selective grains of the biosorbent. The FTIR spectra indicated bands corresponding to –OH, COO?, –CH, C?=?C, C?=?S, and –C–C– groups were involved in the biosorption process. The XRD pattern of the C. fastigiata was found to be mostly amorphous in nature.  相似文献   
8.
Demand for sustainable renewable energy is on an increase worldwide, whereas the supply is limited. This paper analyses the feasibility of generating electricity and supplying the surplus steam to Daeduk Industrial Complex, by incinerating the combustible municipal waste generated in Daejeon Metropolitan City. The economic feasibility of surplus biogas generated from the anaerobic digestion of food waste and food waste leachate has been analysed. This study estimated resource circulation facility to supply 23,200 m3/day of biogas generated to Daejeon Combined Heat and Power plant. By 2023, it is expected to supply 25.7 tons of steam per hour all year round. The additional steam demand in Daeduk Industrial Complex is estimated as 101,537 tons/year. Surplus biogas will be supplied through an additional 960-m new installation. The cost of biogas is estimated at 30% of the unit biogas production cost. Daejeon Combined Heat and Power plant expects to make 60% additional profit, and Daeduk Industrial Complex and the communities nearby expect to achieve 10% cost savings. It also reduces the dependence of energy on fossil fuels, contributes to national environmental energy policy in reduction in greenhouse gases, creates competitiveness in local business and reduces corporate tax and generates revenue.  相似文献   
9.
Environmental Science and Pollution Research - Mesocosms are real-world environmental science tools for bridging the gap between laboratory-scale experiments and actual habitat studies on ecosystem...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号