首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
安全科学   1篇
环保管理   5篇
综合类   1篇
基础理论   3篇
评价与监测   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2002年   1篇
  1997年   2篇
  1990年   1篇
  1955年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Due to increasing use of polar pesticides, they are found together with their degradation products in ground- and surface waters serving for drinking water treatment. The triazine derivatives acetamido-atrazine, ametryne, atrazine, cyanazine, deethylatrazine, deethyldeisopropyl-hydroxyatrazine, deethyl-hydroxyatrazine, deisopropyl-atrazin, deisopropyl-hydroxyatrazine, desmetryn, hydroxyatrazine, prometryne, propazine, simazine, terbumeton, terbutryne and terbutylazine, and the pesticides 2,4-D, dichlorprop, isoproturon, diuron, metolachlor, glyphosate, metsulfuronmethyl and dalapon, all of them belonging to this type of pesticides, have been studied. For determination of triazine derivatives UV detection by means of diode array detector (DAD) as well as mass spectrometric (MS) detection coupled by thermospray interface (TSP) have been used successfully after liquid chromatoraphic (LC) separation. Interfaces like thermospray (TSP), electrospray (ESP) and atmospheric pressure chemical ionisation (APCI) were examined with regard to their suitability for substance-specific detection of polar pesticides by flow injection analysis (FIA) with MS- and tandem mass spectroscopic detection (MS/MS) without preceding LC separation. Optimised detection conditions for these pesticides using FIA are presented, and solutions for occurring problems are offered.  相似文献   
2.
3.
An important element of resource management and conservation is an understanding of the tradeoffs between marketed products, such as timber, and measures of environmental quality, such as biodiversity. In this paper, we develop an integrated economic-ecological spatial optimization model that we then apply to evaluate alternate forest policies on a 560,000 km2 study region of managed boreal forest in Alberta and British Columbia, Canada. The integrated model incorporates dynamic forest sector harvesting, current levels of oil and gas sector development, coarse-filter or habitat-based old forest indicators, a set of empirical forest bird abundance models, and statistical models of the natural and current fire regimes. Using our integrated model, economic tradeoff curves, or production possibility frontiers, are developed to illustrate the cost of achieving coarse-filter targets by a set time (50 years) within a 100-year time horizon. We found levels of ecological indicators and economic returns from the timber industry could both be increased if spatial constraints imposed by the current policy environment were relaxed; other factors being equal, this implies current policy should be revised. We explore the production possibility frontier's relationship to the range of natural variation of old forest habitat, and show how this range can be used to guide choices of preferred locations along the frontier. We also show that coarse-filter constraints on the abundance of certain habitat elements are sufficient to satisfy some fine-filter objectives, expressed as the predicted abundances of various species of songbirds.  相似文献   
4.
Abstract: The Crown of the Continent is one of the premiere ecosystems in North America containing Waterton‐Glacier International Peace Park, the Bob Marshall‐Great Bear‐Scapegoat Wilderness Complex in Montana, various Provincial Parks in British Columbia and Alberta, several national and state forest lands in the USA, and Crown Lands in Canada. The region is also the headwater source for three of the continent’s great rivers: Columbia, Missouri and Saskatchewan that flow to the Pacific, Atlantic and Arctic Oceans, respectively. Headwaters originate in high elevation alpine environs characterized by high snow accumulations in winter and rainstorms in summer. Most headwaters of the region contain high quality waters with few ions in solution and extremely low nutrient concentrations. Alpine streams have few species of aquatic organisms; however, they often possess rare species and have hydrogeomorphic features that make them vulnerable to climatic change. Subalpine and valley bottom streams of the Crown of the Continent Ecosystem (CCE) flow through well forested watersheds. Along the elevation gradient, the streams and rivers of the CCE flow through series of confining and nonconfining valleys resulting in distinct canyon and floodplain reaches. The alluvial floodplains are characterized by high species diversity and bioproduction maintained by the hydrologic linkages of habitats. The streams and rivers of the CCE have low nutrient concentrations, but may be significantly affected by wildfire, various resource extraction activities, such as logging or mining and exurban encroachment. Wildfire has been shown to increase nutrient loading in streams, both during a fire and then following the fire for as much as 5 years. Logging practices increase nutrient loading and the algal productivity of stream periphyton. Logging and associated roads are also known to increase sediment transport into Crown of the Continent streams directly affecting spawning success of native trout. The CCE is one of the fastest growing regions in the USA because of the many recreational amenities of the region. And, while the region has many remarkably pristine headwater streams and receiving rivers, there are many pending threats to water quality and quantity. One of the most urgent threats comes from the coal and gas fields in the northern part of the Crown of the Continent, where coal deposits are proposed for mountain‐top removal and open‐pit mining operations. This will have significant effects on the waters of the region, its native plants and animals and quality of life of the people.  相似文献   
5.
Floodplains are among the world's most threatened ecosystems due to the pervasiveness of dams, levee systems, and other modifications to rivers. Few unaltered floodplains remain where we may examine their dynamics over decadal time scales. Our study provides a detailed examination of landscape change over a 60-year period (1945-2004) on the Nyack floodplain of the Middle Fork of the Flathead River, a free-flowing, gravel-bed river in northwest Montana, USA. We used historical aerial photographs and airborne and satellite imagery to delineate habitats (i.e., mature forest, regenerative forest, water, cobble) within the floodplain. We related changes in the distribution and size of these habitats to hydrologic disturbance and regional climate. Results show a relationship between changes in floodplain habitats and annual flood magnitude, as well as between hydrology and the cooling and warming phases of the Pacific Decadal Oscillation (PDO). Large magnitude floods and greater frequency of moderate floods were associated with the cooling phases of the PDO, resulting in a floodplain environment dominated by extensive restructuring and regeneration of floodplain habitats. Conversely, warming phases of the PDO corresponded with decreases in magnitude, duration, and frequency of critical flows, creating a floodplain environment dominated by late successional vegetation and low levels of physical restructuring. Over the 60-year time series, habitat change was widespread throughout the floodplain, though the relative abundances of the habitats did not change greatly. We conclude that the long- and short-term interactions of climate, floods, and plant succession produce a shifting habitat mosaic that is a fundamental attribute of natural floodplain ecosystems.  相似文献   
6.
Habitats or environmental factors that convey spatial and temporal resistance and/or resilience to biotic communities that have been impacted by biophysical disturbances may be called refugia. Most refugia in rivers are characterized by extensive coupling of the main channel with adjacent streamside forests, floodplain features, and groundwater. These habitats operate at different spatial scales, from localized particles, to channel units such as pools and riffles, to reaches and longer sections, and at the basin level. A spatial hierarchy of different physical components of a drainage network is proposed to provide a context for different refugia. Examples of refugia operating at different spatial scales, such as pools, large woody debris, floodplains, below dams, and catchment basins are discussed. We hope that the geomorphic context proposed for examining refugia habitats will assist in the conservation of pristine areas and attributes of river systems and also allow a better understanding of rehabilitation needs in rivers that have been extensively altered.  相似文献   
7.
At the Sulm River, an Austrian lowland river, an ecologically orientated flood protection project was carried out from 1998-2000. Habitat modeling over a subsequent 3-year monitoring program (2001-2003) helped assess the effects of river bed embankment and of initiating a new meander by constructing a side channel and allowing self-developing side erosion. Hydrodynamic and physical habitat models were combined with fish-ecological methods. The results show a strong influence of riverbed dynamics on the habitat quality and quantity for the juvenile age classes (0+, 1+, 2+) of nase (Chondrostoma nasus), a key fish species of the Sulm River. The morphological conditions modified by floods changed significantly and decreased the amount of weighted usable areas. The primary factor was river bed aggradation, especially along the inner bend of the meander. This was a consequence of the reduced sediment transport capacity due to channel widening in the modeling area. The higher flow velocities and shallower depths, combined with the steeper bank angle, reduced the Weighted Useable Areas (WUAs) of habitats for juvenile nase. The modeling results were evaluated by combining results of mesohabitat-fishing surveys and habitat quality assessments. Both, the modeling and the fishing results demonstrated a reduced suitability of the habitats after the morphological modifications, but the situation was still improved compared to the pre-restoration conditions at the Sulm River.  相似文献   
8.
Abstract: Climate‐change scenarios project significant temperature changes for most of South America. We studied the potential impacts of predicted climate‐driven change on the distribution and conservation of 26 broad‐range birds from South America Cerrado biome (a savanna that also encompass tracts of grasslands and forests). We used 12 temperature or precipitation‐related bioclimatic variables, nine niche modeling techniques, three general circulation models, and two climate scenarios (for 2030, 2065, 2099) for each species to model distribution ranges. To reach a consensus scenario, we used an ensemble‐forecasting approach to obtain an average distribution for each species at each time interval. We estimated the range extent and shift of each species. Changes in range size varied across species and according to habitat dependency; future predicted range extent was negatively correlated with current predicted range extent in all scenarios. Evolution of range size under full or null dispersal scenarios varied among species from a 5% increase to an 80% decrease. The mean expected range shifts under null and full‐dispersal scenarios were 175 and 200 km, respectively (range 15–399 km), and the shift was usually toward southeastern Brazil. We predicted larger range contractions and longer range shifts for forest‐ and grassland‐dependent species than for savanna‐dependent birds. A negative correlation between current range extent and predicted range loss revealed that geographically restricted species may face stronger threat and become even rarer. The predicted southeasterly direction of range changes is cause for concern because ranges are predicted to shift to the most developed and populated region of Brazil. Also, southeastern Brazil is the least likely region to contain significant dispersal corridors, to allow expansion of Cerrado vegetation types, or to accommodate creation of new reserves.  相似文献   
9.
Ezra Hauer 《Safety Science》2010,48(9):1111-1122
Prediction is about potential outcomes: what will happen if and what would have happened if. The first question arises when safety targets are set, the second when the effect of an intervention on safety is to be evaluated. There are many ways to predict. For the same data different prediction methods produce different predictions. What targets are set and what estimates of intervention effect are produced will depend on what method of prediction is chosen. Therefore one has to determine what method tends to predict best. To do so empirically one asks what method would have predicted best had it been applied in the past and then one assumes, inductively, that the same would apply in the future. Quantitative measures of prediction quality are suggested and it is shown how these measures of prediction quality allow one to determine which of two prediction methods should be preferred.The suggested approach was applied to two data sets: The time series of motor vehicle accident fatalities in Province A and in Province B. On the basis of this analysis one may draw tentative conclusions for these jurisdictions and the methods tested; one can say what method seems preferable, what is the average size of bias than needs to be corrected and how accurate is the prediction likely to be. Broader conclusions will emerge once many additional methods of prediction are applied to data from many other jurisdictions and pertaining to a variety of circumstances.  相似文献   
10.
ABSTRACT: We have developed an approach which examines ecosystem function and the potential effects of climatic shifts. The Lake McDonald watershed of Glacier National Park was the focus for two linked research activities: acquisition of baseline data on hydrologic, chemical and aquatic organism attributes that characterize this pristine northern rocky mountain watershed, and further developing the Regional Hydro-Ecosystem Simulation System (RHESSys), a collection of integrated models which collectively provide spatially explicit, mechanistically-derived outputs of ecosystem processes, including hydrologic outflow, soil moisture, and snow-pack water equivalence. In this unique setting field validation of RHESSys, outputs demonstrated that reasonable estimates of SWE and streamflow are being produced. RHESSys was used to predict annual stream discharge and temperature. The predictions, in conjunction with the field data, indicated that aquatic resources of the park may be significantly affected. Utilizing RHESSys to predict potential climate scenarios and response of other key ecosystem components can provide scientific insights as well as proactive guidelines for national park management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号